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Three simple rules to ensure reasonably credible 
subgroup analyses
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The limitations of subgroup analyses 
are well established—false positives 
due to multiple comparisons, false 
negatives due to inadequate power, 
and limited ability to inform individual 
treatment decisions because patients 
have multiple characteristics that vary 
simultaneously. In this article, we apply 
Bayes’s rule to determine the 
probability that a positive subgroup 
analysis is a true positive. From this 
framework, we derive simple rules to 
determine when subgroup analyses 
can be performed as hypothesis testing 
analyses and thus inform when 
subgroup analyses should influence 
how we practice medicine.
A table or figure reporting about a dozen subgroup 
analyses is a near ubiquitous feature of major clinical 
trial publications.1 2  The motivation behind these 
analyses is clear and compelling—to determine which 
patients most benefit from treatment, based on spe-
cific risk factors. However, the limitations of these 
analyses are well established—false positives due to 
multiple comparisons, false negatives due to inade-
quate power, and limited ability to inform individual 
treatment decisions because patients have multiple 
characteristics that vary simultaneously.3 When, if 
ever, should subgroup analyses, tested using sub-
group treatment interactions, influence how we prac-
tice medicine?

Contrary to common belief, the well documented 
unreliability of subgroup analyses are not inherent; the 
same problems would arise for clinical trials themselves 
if we routinely performed underpowered trials examin-
ing haphazardly selected interventions. If properly 
selected (based on previous empirical evidence and 
current scientific theory), an adequately powered sub-
group analysis can be a valid hypothesis testing endeav-
our. Trialists, reviewers, and editors should carefully 
consider such issues when making the essential scien-
tific distinction between primary (that is, hypothesis 
testing) and secondary (that is, hypothesis generating) 
subgroup analyses.4 A positive, hypothesis testing anal-
ysis can directly influence patient care whereas a posi-
tive hypothesis generating analysis only calls for 
confirmatory research.

There are excellent general discussions of subgroup 
analyses and checklists to evaluate their credibility,3 5-7 
but in this paper, we will quantitatively explore the key 
pragmatic question of when a subgroup analysis should 
be considered hypothesis testing versus hypothesis 
generating. We used simulation modelling to derive 
simple quantitative rules of thumb that can be applied 
by trialists, reviewers, and editors to ensure that sub-
group analyses are properly contextualised and used by 
readers to quickly evaluate the credibility of a specific 
subgroup finding.

Predictive value of subgroup analyses as diagnostic 
tests: an analogy
Interpretation of a subgroup analysis is analogous to 
rigorously interpreting a diagnostic test. Before order-
ing a diagnostic test, a clinician considers the probabil-
ity the person has the condition (the prior probability) 
and the accuracy of the test (often measured with sensi-
tivity and specificity). With this information, the proba-
bility that a positive test is a true positive versus false 
positive can be estimated using Bayes’s rule: posterior 
odds=sensitivity÷(1−specificity)×prior odds.

Bayes’s rule can be seamlessly applied to the con-
text of subgroup analysis, and informs why a shot-
gun approach to subgroup analysis fails. The 
sensitivity of a subgroup analysis is its statistical 
power: the probability of finding a true difference 
between groups if one exists. Most large clinical tri-
als are powered to find a clinically meaningful differ-
ence between treatment and control groups around 
80-90% of the time. Compared with the power for the 
trial’s main effect, most subgroup analyses have 
much less statistical power to identify subgroup 
effects. Power might often be closer to 20-30% for 
subgroup effect sizes similar in magnitude to the 
main treatment effect sizes (that is, a relative odds 
ratio for a subgroup treatment that is equal to the 

Summary PointS
Limitations of subgroup analyses are well established—false positives due to 
multiple comparisons, false negatives due to inadequate power, and limited ability 
to inform individual treatment decisions because patients have multiple 
characteristics that vary simultaneously. It remains uncertain when subgroup 
analyses should influence clinical practice
Categorical subgroup analyses should not be part of a typical clinical trial’s 
hypothesis testing analysis unless the prior probability for a subgroup effect being 
present is at least 20% and preferably higher than 50%
Rarely should more than one to two primary categorical subgroup analyses be 
performed
In trials with exceptional power to identify subgroup effects, hypothesis testing 
analyses of subgroups should be justified a priori
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odds ratio for the overall treatment)8 9 Thus, the sam-
ple size needed to adequately contrast treatment 
effects measured in two different subgroups is much 
larger than the sample needed to distinguish an over-
all treatment effect from the null. Just as statistical 
power can be thought of as the sensitivity of a trial, 
the specificity of clinical trials is generally set to be 
95%, based on the conventional significance thresh-
old of P<0.05.

Finally, an estimate of the prior probability is needed 
to interpret a subgroup analysis. In both diagnostic test-
ing and subgroup analyses, prior probability estimates 
are often unsettling given their inherent uncertainty 
and subjectivity, but failing to grapple with this tends to 
bias us towards falsely accepting new evidence as 
truth.10  Existing criteria to judge the credibility of sub-
group analyses emphasise the importance of prior 
probability and specifically require that a hypothesis 
and its direction of effect are specified a priori and that 
the subgroup effect is supported by within-study empir-
ical and biological evidence.6  In most cases, prior prob-
ability can be roughly estimated by thinking about the 
strength of previous theoretical or empirical evidence 
that the factor in question is likely to modify the relative 
treatment effect.11 Just as power for subgroups is usually 
much lower than for the main effect, so are the prior 
probabilities. 

Expensive trials can only be justified if there is a rea-
sonable probability of success based on prior data. In 
contrast, subgroup analyses with low priors are com-
monly conducted, perhaps because they are perceived 
as being essentially free, but as is shown below, con-
ducting multiple subgroup analyses is statistically 
costly. We can also use empirical data as a rough start-
ing point for thinking about prior probability. Of 
roughly 1200 subgroup analyses of recent clinical trials 
published in high impact journals, 83 (7%) were report-
edly positive.1 Assuming a 5% false positive rate, only a 
fraction of these analyses were likely true positives. 
This observation is supported by the observation that 
less than 15% of these subgroup analyses met four of 10 
criteria for credibility. So, a high-end starting point for 
the prior probability for the average published sub-
group analysis is probably around 5%, which can be 
adjusted on a case by case basis, based on the prior 
empirical and theoretical evidence.

As per Bayes’s rule, low prior probabilities greatly 
increase the chance of a positive result being a false 
positive finding, and low power greatly increases this 
problem. Back to our analogy, the same phenomenon 
explains why ordering insensitive diagnostic tests with 
a low pretest probability leads to most positive test 
results being false positives (table 1 ).12

application to subgroup analyses
Using this framework that has been applied in related 
contexts,13  we can calculate the probability of a positive 
subgroup analysis (treatment subgroup interaction) 
being a true positive versus false positive using Bayes’s 
rule.13  A positive analysis, in this context, refers to a sig-
nificant difference in treatment effect between groups 
such that some groups can be demonstrated to have a 
greater or lesser relative treatment effect than other 
groups. Figure 1 illustrates the association between 
prior probability and positive predictive value (the 
chance that a trial reporting a statistically significant 
result is not reporting a false positive) when subgroup 
statistical power is varied. In rare scenarios where there 
is excellent subgroup power, positive results can be 
highly reliable, but even in this ideal situation the posi-
tive predictive value drops precipitously when prior 
probability drops below 20% to 30% or when multiple 
subgroup analyses are performed without adjusting for 
multiple comparisons.

Table 2  quantifies the positive predictive value for 
statistically significant subgroup findings (that is, 
treatment subgroup interaction effects) over a wide 
range of prior probabilities and number of subgroup 
comparisons. Although we know of no established con-
ventions for acceptable positive predictive values, for 
illustrative purposes we apply a minimum  threshold 

Table 1 | Comparison between diagnostic tests and subgroup analyses
Diagnostic testing Subgroup analyses

Prior probability Based on population prevalence and 
clinical factors

Based on previous clinical evidence and 
pathophysiological rationale

Test accuracy Sensitivity Statistical power
Specificity 1−α

Prior probability
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Fig 1 | Association between prior probability and positive 
predictive values for subgroup analyses. The base case 
represents an uncommonly well powered, categorical 
subgroup analysis (that is, evenly divided subgroups, the 
effect the overall trial is powered for is entirely present in 
one subgroup, there is no effect is present in the other 
subgroup, and the trial has 90% power overall to find its 
primary effect), resulting in 37% power to find the 
subgroup effect. The probability of a true positive finding 
can be either reduced or improved by changing these 
assumptions. The lower line (multiple comparisons) 
illustrates how positive predictive values decline if 10 
subgroup analyses are performed with 37% power to 
identify each subgroup effect and with no adjustment for 
multiple comparisons (as opposed to the one analysis 
illustrated in the base case). Conversely, the higher line 
(large subgroup effect) illustrates a scenario where the 
positive predictive values increase as power is improved—
the effect size in the subgroup is twice as large as the base 
case (subgroup power=95%)
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of an 80% positive predictive value (that is, accept-
ing a one in five chance (20%) of a positive finding 
being false). As this threshold is arbitrary and 
should differ depending on context,14 our results are 
presented so that readers can choose whatever 
threshold they wish. These analyses are based on P 
values of 0.05. When P values for subgroups are 
lower than 0.05, the positive predictive values will be 
higher. Like all rules of thumb, these three rules are 
proposed as only a starting point for thinking 
through individual cases.

rules of thumb for performing primary one-at-a-time 
subgroup analyses
Rule of thumb 1
Categorical subgroup analyses should not be part of a 
typical clinical trial’s primary (hypothesis testing) anal-
ysis unless the prior probability for a subgroup effect 
being present is at least 20% and preferably higher than 
50%. Even under optimal circumstances, a subgroup 
analysis of a categorical variable will rarely have greater 
than 50% statistical power to detect a moderate sub-
group effect, and more often is closer to 20%.9 In gen-
eral, for a modestly powered subgroup effect (that is, 
20% power) unless there is a strong prior probability 
(that is, 50%), the chance of a positive subgroup effect 
being a true positive finding will be less than 80% 
(table 2). Even when subgroup effect power is excellent 
(that is, 80%), to reach an 80% true positive threshold 
requires prior probability of 20%.

One seeming exception to this rule is that we rec-
ommend routinely conducting multivariable risk 
based analyses of trials with positive overall results 
and of negative trials in which the intervention has 
known harms (such as major surgery). We have so far 
only considered relative subgroup effects (for exam-
ple, one group benefits from treatment while another 

group does not benefit). Risk based analyses examine 
how both the relative and absolute benefit of interven-
tions varies between patients at high, medium, and 
low pretreatment risk. Even if a credible relative sub-
group exists, it does not imply that treatment deci-
sions should be different across subgroup levels, 
since treatment could still be worthwhile (or not 
worthwhile) in both groups. Further, risk based anal-
yses can inform care even when the prior probability 
for a risk based subgroup effect is low.11 Even if no 
such effect exists, the absolute risk reduction with 
treatment will be higher in patients at high pretreat-
ment risk and these analyses can quantify the magni-
tude of those differences.

Rule of thumb 2
Rarely should more than one to two primary categorical 
subgroup analyses be performed. When one study 
examines treatment differences across multiple risk fac-
tors (multiple comparisons), the likelihood that a study 
with a reported subgroup effect has at least one false 
positive result increases, thereby eroding the reliability 
of all positive findings. As shown in figure 1, the reliabil-
ity of a positive finding falls considerably across the 
spectrum of prior probability when increasing the num-
ber of subgroup analyses. Even with an above average 
prior probability for a given subgroup comparison (that 
is, 20%) and excellent statistical power to find a sub-
group effect (that is, 80%), the positive predictive value 
would fall from 80% if one comparison is made to 38% 
if 10 comparisons are made (table 2). Another, poten-
tially less appreciated, consequence of performing mul-
tiple underpowered subgroup comparisons is that 
readers can be misled into believing that these negative 
results provide reliable evidence that the treatment is 
similarly effective in all patients, potentially masking 
important subgroup effects owing to inadequate 
power.9

Correction for multiple comparisons decreases the 
risk of false positives, but does not eliminate the 
broader problem. Firstly, correcting for multiple com-
parisons decreases statistical power, thus increasing 
the risk of false negative findings further. Secondly, as 
investigators add subgroup analyses with less and 
less evidence or theory to support them, the prior 
probability for the average subgroup analysis inevita-
bly falls, further reducing the positive predictive 
value (fig 2).

Rule of thumb 3
In trials with exceptional power to identify subgroup 
effects, hypothesis testing subgroup analyses should be 
justified a priori. Various trial circumstances can lead to 
increased power to identify subgroup effects (table 3 ). 
If, for example, the effect size difference between sub-
groups is larger than that found for the overall trial pop-
ulation, the probability of a true positive subgroup 
effect increases (fig 1). Although such effects are likely 
uncommon, they are not unheard of—and they are the 
effects that are of most clinical importance. For exam-
ple, large subgroup effects were anticipated and then 

Table 2 | Positive predictive values (%)* for significant 
subgroup findings according to prior probability and 
number of subgroup comparisons

Prior 
probability (%)

Power of subgroup comparison and no of 
comparisons
20% power 50% power 80% power
1 5 10 1 5 10 1 5 10

5 17 14 11 35 18 12 46 19 12
10 31 25 20 53 32 22 64 33 22
20 50 43 36 71 52 38 80 53 38
30 63 56 49 81 65 52 87 65 52
40 73 67 60 87 74 62 91 75 62
50 80 75 69 91 81 71 94 82 71
60 86 82 77 94 87 79 96 87 79
70 90 87 84 96 91 85 97 91 85
80 94 92 90 98 95 91 99 95 91
*Positive predictive values=probability that all reported positives 
analyses are true positives for a trial reporting at least one positive 
subgroup effect (that is, no false positives) for a given prior probability 
and power in the context of conducting one, five, or 10 subgroup 
comparisons without adjustment for multiple comparisons, assuming 
α=5% (0.05). In formal Bayesian statistical analyses, the priors and 
posteriors are generally presented as probability distributions, but we 
have represented both as fixed values for simplicity. Estimated using 
approach of Ioannidis.13
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discovered for higher degrees of carotid stenosis in 
symptomatic endarterectomy trials,15  and in time to 
reperfusion for stroke16  and myocardial infarction.17  18 
Similarly, in biologically directed treatments, such as 
for cancer treatments, it is possible that a treatment will 
be effective in one subgroup and ineffective in another.

In addition to anticipated subgroup effect size, equal-
ising the proportion of individuals in each subgroup and 
testing a continuous variable (such as baseline blood 
pressure level) along its continuum will substantially 
improve statistical power.8  19 But even with excellent 
power, prior probability is an important determinant of 
whether a significant subgroup effect is a true positive. 
Just as an excellent diagnostic test  (sensitivity 99%, 

specificity 95%) results in a 20% positive predictive 
value if the prior probability of disease is 1%, only 20% 
of statistically significant subgroup effects will be true 
positives if the subgroup effect only had a 1% chance of 
occurring to begin with, even with 99% power.

This demonstrates why looking at multiple variables 
might be fine for hypothesis generating analyses, but 
that primary (hypothesis testing) analyses must be 
based on previous empirical evidence or theory, gener-
ally be few in number, and be specified a priori. For 
unique cases with improved power to detect subgroup 
effects, after formally estimating subgroup effect power 
before the trial and considering the prior probability, 
table 2 can inform whether power is adequate to con-
sider such an analysis as a hypothesis testing analysis 
versus a hypothesis generating analysis.

Conclusion
By not following a sound scientific process, conven-
tional subgroup analyses increase the risk of both 
false positive and false negative findings. Careful 
consideration of the likelihood of a subgroup effect 
being present (prior probability) and the statistical 
power of the subgroup analysis (sensitivity) need to 
inform whether a subgroup analysis should be part of 
the primary (hypothesis testing) or exploratory 
(hypothesis generating) analyses. We recommend 
that hypothesis testing analyses include no more 
than one or two prespecified subgroup analyses 
founded on adequate prior probability and power so 
that positive findings are more reliable and can thus 
be used to target treatment.

This approach would substantially restrict the num-
ber of subgroup analyses performed. It can be argued 
that subgroup analyses that do not meet these criteria 
should never be performed because false positives will 
greatly outnumber true positives and could be inte-
grated into clinical decisions in spite of the best inten-
tions of researchers. However, there is also a 
reasonable argument supporting a limited role for 
exploratory hypothesis generating analyses of sub-
groups. For example, there was little reason to think 
that diabetics would fare better with coronary artery 
bypass than with percutaneous interventions before 
an exploratory subgroup analysis of the BARI trial.20  
Although still somewhat controversial,21  the balance 
of evidence argues that this is a real subgroup effect 
that would not have been discovered without an 
exploratory analysis.22 23  At least, if such analyses are 
performed, they should be specifically designated as 
exploratory, broadly understood to be hypothesis gen-
erating and reported separately from hypothesis test-
ing analyses. For clinicians, these exploratory 
analyses should be ignored until confirmed or refuted 
by subsequent studies.11

Subgroup analyses have historically misinformed as 
much as they have informed.3 The three simple rules 
outlined here can help guide more meaningful and 
accurate analyses and reporting of randomised 
 controlled trials, better guide clinical implementation, 
and avoid repeating mistakes of the past.
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Fig 2 | Effect of decreasing prior probability of each 
additional subgroup on positive predictive value (the 
likelihood that a positive finding is a “true positive”) 
adjusting for multiple comparisons. The two lines 
represent how the positive predictive value decreases 
under different assumptions about how prior probability 
decreases. In the blue line (slowly declining prior 
probability), prior probability starts at 0.4 and falls per 
extra subgroup either linearly (0.04 per subgroup). In the 
dotted line (rapidly declining prior probability), prior 
probability falls inversely to the number of subgroups

Table 3 | Changes in power to identify subgroup effects 
after changes in specification of subgroup effect
Change in subgroup effect and 
description

Power to detect 
subgroup effect (%)

Base case only (no change)
 Trial with 90% power for main effect; 
binary subgroup with half the trial 
population in each population; treatment 
effect, equal to the trial’s powered effect, 
exists in one subgroup and no effect exists 
in the other subgroup

38

Base case with change in main trial power
 Decrease overall trial power to 80% 30
 Increase overall trial power to 95% 45
 Increase overall trial power to 99% 58
Base case with change in subgroup size
 25% of trial population in subgroup 27
 10% of trial population in subgroup 16
 5% of trial population in subgroup 11
Base care with change in subgroup effect size
 50% of base case effect size 12
 150% of base case effect size 74
 200% of base case effect size 95
Power was estimated for each of the outlined scenarios using the 
methodology of Brookes and colleagues.19
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