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Abstract
Objectives To develop a transparent and reproducible measure for
hospitals that can indicate when deaths in hospital or within 30 days of
discharge are high relative to other hospitals, given the characteristics
of the patients in that hospital, and to investigate those factors that have
the greatest effect in changing the rank of a hospital, whether interactions
exist between those factors, and the stability of the measure over time.

Design Retrospective cross sectional study of admissions to English
hospitals.

Setting Hospital episode statistics for England from 1 April 2005 to 30
September 2010, with linked mortality data from the Office for National
Statistics.

Participants 36.5 million completed hospital admissions in 146 general
and 72 specialist trusts.

Main outcome measures Deaths within hospital or within 30 days of
discharge from hospital.

Results The predictors that were used in the final model comprised
admission diagnosis, age, sex, type of admission, and comorbidity. The
percentage of people admitted who died in hospital or within 30 days of
discharge was 4.2% for males and 4.5% for females. Emergency
admissions comprised 75% of all admissions and 5.5% died, in contrast
to 0.8% who died after an elective admission. The percentage who died
with a Charlson comorbidity score of 0 was 2% in contrast with 15%who
died with a score greater than 5. Given these variables, the relative
standardised mortality rates of the hospitals were not noticeably changed
by adjusting for the area level deprivation and number of previous
emergency visits to hospital. There was little evidence that including
interaction terms changed the relative values by any great amount. Using
these predictors the summary hospital mortality index (SHMI) was
derived. For 2007/8 the model had a C statistic of 0.911 and accounted
for 81% of the variability of between hospital mortality. A random effects

funnel plot was used to identify outlying hospitals. The outliers from the
SHMI over the period 2005-10 have previously been identified using
other mortality indicators.

Conclusion The SHMI is a relatively simple tool that can be used in
conjunction with other information to identify hospitals that may need
further investigation.

Introduction
About 60% of deaths occur in hospital.1 Although a large
proportion of these are inevitable, avoidance of unnecessary
death is an important objective for health services. Several
methods are used within the United Kingdom’s health service
to identify trusts with high in-hospital mortality, the most widely
publicised being the standardised mortality ratio (a ratio of
observed to expected deaths), which is calculated from a
statistical model.
The hospital standardised mortality ratio (HSMR)2 produced
by Dr Foster, a provider of healthcare information based at
Imperial College, London has been used by the Department of
Health for several years to identify failing hospitals.3 Concerns
and criticism over the methodology and interpretation of
standardised mortality ratios have, however, been raised both
in academic settings and by the media.4-7

Arguments against hospital standardised mortality ratios are
that factors unrelated to care, such as differential measurement
error and inconsistent proxy measures of risk, may affect a
hospital’s ranking4 and that they are open to gaming.5 For
example, the primary reason for admission is given a diagnostic
code, which is used in a model to predict the likelihood of death
of that patient. If one hospital codes differently from another,
the expected number of deaths in that hospital and hence the
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hospital standardised mortality ratio can be affected. Some have
suggested there is little evidence of a correlation between the
quality of care a hospital provides and its hospital standardised
mortality ratio.6

A national steering group was established in 2010 to develop a
consensus view of the key methodological requirements for a
practical hospital standardised mortality ratio.8 Advocating an
indicator that was transparent, reproducible, and gave a more
complete picture of mortality in hospital, the group specified a
new measure, the summary hospital mortality index (SHMI).
Table 1⇓ compares the specifications of the index with those
of the hospital standardised mortality ratio. The index was to
be calculated using the ratio of the number of deaths during
admission to a particular hospital in a year compared with the
number of expected deaths calculated using a model adjusted
for the variables given in table 1. The index reported on all NHS
acute trusts and was designed to cover deaths relating to all
admissions, including deaths occurring in hospital or within 30
days after discharge.
In February 2011 the University of Sheffield was commissioned
to carry out a sensitivity analysis of the suggested variables to
determine if their inclusion in themodel had an important impact
on this new performance indicator. A report was produced in
April 2011.9 The specification was accepted by the Department
of Health in May and was implemented on 27 October 2011.
We investigated the properties of the SHMI, why particular
variables have been included, and how the index should be used.

Methods
The Department of Health supplied us with a dataset comprising
all admissions to English hospitals obtained from the hospital
episode statistics data warehouse for episodes that ended
between 1 April 2005 and 30 September 2010. After discussion
with the Department of Health, we excluded maternity
admissions. The records for admissions comprised episodes of
care—that is, a continuous period of care administered within
a particular consultant led specialty at a single hospital provider.
An admission could comprise one or more episodes in one
hospital. We used information from the first episode for each
admission. We excluded day cases and private and community
hospitals that, based on their hospital episode statistics provider
codes, were unlikely to accept acute admissions. We examined
the effect of including or excluding admissions with zero length
of stay. The conclusions were unaffected either way and are
included in the results reported here.
We linked data on date of death supplied by the Office for
National Statistics to the admission dataset and identified deaths
within 30 days of discharge, which we assigned to the last
hospital to which the patient was admitted. To include all
admissions in the analysis, we created categories for all
variables, including one for missing values. We split age into
five year age bands, except for infants aged 0-1 and preschool
children aged 1-4. A comorbidity score was derived by
converting secondary diagnosis codes into the 19 clinical
conditions identified in the Charlson comorbidity index,10 with
contemporary weights for the presence of individual conditions
contributing to the overall score.2 Hospital episode statistics
reported the index of multiple deprivation rank (an area level
deprivation measure derived from the patient’s postcode)
grouped by fifths, with missing values grouped separately. To
examine the interaction between age and comorbidity we
assessed whether the risk of death with different levels of
comorbidity was potentially different for those aged more than
65 compared with those who were younger.

In the first diagnosis field we used ICD-10 (international
classification of diseases, 10th revision) codes to identify the
reasons for admission, and collapsed these into the grouping
schemes given by the Agency for Healthcare Research and
Quality11 and National Centre for Health Outcomes
Development.12 As the scheme used by the National Centre for
Health Outcomes Development excludes deaths from cancer,
we created new categories to include these. Initially we took a
10% random sample of the whole dataset and combined some
diagnoses into clinically coherent diagnostic groups to ensure
a minimum of about 100 deaths within each group, so that
sufficient events were available to get robust models. This
translates into a minimum of about 200 deaths in any calendar
year. A few groups did not have logical partners and so had
fewer deaths but none had less than 50 in the 10% sample. A
total of 138 diagnostic groups were used (see web extra appendix
1 for details and number of deaths in the 10% sample).

Statistical analysis
We estimated the probability of death over all admissions in
one financial year by fitting logistic regression models using
the SHMI covariates within diagnostic group and then summing
these probabilities over diagnostic groups for each hospital to
obtain the expected number of deaths in a hospital for the year
(see formulas in web extra appendix 2). The method is
equivalent to indirect standardisation13 and is similar to that used
by Dr Foster.3 14 We used individual case logistic regression,
which does not require aggregation of categories for a model
to fit. We used the same categorical predictor variables for each
diagnostic group, which meant that we allowed different
coefficients for the predictors for each diagnostic group but also
that some models would be over-parameterised. For example,
for many diseases no deaths occur at young ages and so the
young age categories will be redundant, and, similarly for
ovarian cancer, the expected value for men will be zero. For
large datasets, however, parsimony is not a priority, and the
advantage of using the samemodel structure in every diagnostic
group is that a hospital could calculate its own SHMI by using
a standard set of covariates and the weights provided by the
logistic regression.
The principle we used in choosing a model is that a parameter
is unnecessary in the model if it does not change noticeably
either the relative or the absolute magnitude of the performance
indicators of the hospitals. A variable may be a statistically
significant predictor of mortality, but if the distribution of the
variable is similar across hospitals, then adjusting for it will not
change the values of the hospitals’ relative SHMI. A variable
would have no value in discriminating between hospitals if the
SHMI from a model with an additional covariate had a high
correlation with an unadjusted SHMI. Therefore, using rank
correlation, we chose covariates to be potentially included in
the model when their inclusion would give relatively low
correlations between the expected values with the existing
model. We used the diffsum plot (see web extra appendix 2) to
compare the absolute magnitude of change between SHMIs
under different models. This plot shows those hospitals that
would experience a change to their index if a covariate was
included in the model. Given two models, the plot shows the
difference in expected number of deaths in a hospital between
model 1 and model 2 against the mean of the expected values.
We also added a straight line, which shows the value where the
index would be expected to change by 5% if model 2 were
adopted rather than model 1. Points above the top line are those
trusts with an index that would be expected to increase by at
least 5% and points below the bottom line are those trusts with

No commercial reuse: See rights and reprints http://www.bmj.com/permissions Subscribe: http://www.bmj.com/subscribe

BMJ 2012;344:e1001 doi: 10.1136/bmj.e1001 (Published 1 March 2012) Page 2 of 11

RESEARCH

 on 20 M
arch 2024 by guest. P

rotected by copyright.
http://w

w
w

.bm
j.com

/
B

M
J: first published as 10.1136/bm

j.e1001 on 1 M
arch 2012. D

ow
nloaded from

 

http://www.bmj.com/permissions
http://www.bmj.com/subscribe
http://www.bmj.com/


an index that would be expected to decrease by 5% if model 2
were adopted rather than model 1.
To look at outliers from the model we used a funnel plot, in
which the observed SHMI for each trust is plotted against the
expected number of deaths.15 We used a random effects model
to draw control limits around the target outcome—that is, a
SHMI of 1.16 This enables an over-dispersion parameter to allow
for unexplained variation between trusts. If all the trusts were
included in the estimate, then truly outlying trusts would inflate
the over-dispersion parameter unduly and may not appear as
outliers. Thus in estimating the over-dispersion parameter we
decided to exclude a proportion of the outlying hospitals. When
we calculated the over-dispersion parameter for the log SHMI
we adopted a trimming approach16 when calculating z scores (a
scaled difference between the observed and expected values)
by omitting the top and bottom 10% of trusts according to the
z score. If no true outliers existed then the estimate would not
be affected much by using this procedure.
We derived themodel for the financial year 2007/8 then repeated
the procedure for 2009/10 to validate the model. We then fitted
the final model to the five financial years 2005/6 to 2009/10.

Results
In total 146 general (acute) trusts and 72 (71 in 2005/6) specialist
trusts were included. As no formal definition of general or
specialist status exists the definition of general trusts was taken
from lists reported by other providers of mortality indicators.
For general trusts during 2009/10, the median number of
admissions was 52 798 (range 12 188-155 809) and the median
number of deaths was 1675 (554-4475). In the same year the
corresponding values for specialist trusts were 2912 (14-231
088) and 30 (0-575).
Table 2⇓ shows the distribution of the number of admissions
by age, sex, and deaths for the analysis dataset, with the
exclusion of admissions detailed in the specification (see table
1) and maternity admissions. In this period, 36 488 693
admissions in England were available for analysis.
The total number of female admissions was similar to the total
number of male admissions. For all admissions over the age of
14, the mortality rate for females was consistently lower than
that for males. Note the apparent Simpson’s Paradox in that the
overall proportion of deaths was higher for females than for
males, on account of there beingmuch greater numbers of older
women, where most of the deaths occur.
Table 3⇓ shows that method of admission, the Charlson
comorbidity scores, and the index of multiple deprivation are
all predictive of death. Mortality increased with increasing
deprivation until the highest category, when mortality was
slightly less than the second highest category. The number of
previous emergency admissions was a predictor of mortality
but this relation was rather complicated as admissions, not
patients, were being looked at; so, for example, a patient with
four previous emergency admissions who died during the fifth
admission would be included as a survivor for each of the
previous four emergency admissions. The percentage of patients
scoring zero on the Charlson comorbidity score depended on
the coding depth, with the lowest being 71.1%, using all
secondary codes. Because of the strong skew, we examined the
Charlson comorbidity score as a potential predictor in several
ways with different depths of coding, as a continuous variable
and as a categorical variable in three groups (0, 1-5, >5). The
greatest variation in the model was explained by including
comorbidity score as a categorical variable and using all
available secondary diagnosis codes.

The basic model included the covariates age and sex. Different
models were then fitted and correlations and diffsum plots used
to choose additional covariates to add to the model. The lowest
correlation between the SHMI allowing for age and sex only
and the same index using a model with one additional covariate
was with the covariate type of admission (elective, non-elective,
and missing), with a correlation of 0.904. Using age, sex, and
type of admission as the basic model we found that the next
covariate to provide a low correlation was the categorical
Charlson comorbidity score (all diagnoses), with 0.951. The
addition of other covariates did not produce correlations less
than 0.95 for the model that contained these fours factors. In
all, 15 models were considered using different ways of coding
comorbidity and including varying numbers of covariates.
Figure 1⇓ shows the diffsum plot for a model containing only
age and sex compared with the model containing type of
admission and Charlson comorbidity score as a categorical
variable. If the extra covariates were included, for about 12
hospitals with an expected number of deaths greater than 100
the SHMI would increase by at least 5% and for about 23 the
index would decrease by at least 5%. No hospital’s SHMIwould
change by more than 5% as a result of fitting the covariates
deprivation score and number of previous emergency admissions
or fitting an interaction with age and comorbidity (fig 1). The
best model therefore included the main effects age, sex,
comorbidity, and type of admission. Based on 2007/8 data the
mean C statistic over diagnostic groups for a model with age
and sex was 0.763 (range 0.515-0.958). (A C statistic is a
measure of howwell a model predicts an event and is interpreted
as the probability that a randomly selected individual who has
an event has a score greater than a randomly selected individual
who does not have an event). The mean C statistic for the model
that included Charlson comorbidity score and type of admission
was 0.830 (range 0.534-0.970). Therefore, by including the two
hospital derived covariates, the area under the receiver operating
characteristic curve increased by about 0.07. The mean does
not, however, account for some diagnostic groups being larger
than others, and the overall C statistic of the model was 0.911.
A linear regression model was used to determine how much of
the variability between hospital trusts was explained by the final
model, with the observed crude death rate as the dependent
variable and the expected death rate from the SHMI model as
the independent variable. The coefficient of determination R²
showed that for 2007/8 data the final model accounted for 81%
of the variability.
The same conclusion was reached by repeating this modelling
procedure for the year 2009/10—namely, that a simple model
with age, sex, comorbidity score, and type of admission was
sufficient to explain hospital variation in crude mortality rates.
Figure 2⇓ gives funnel plots with 2 and 3 standard error bars
for the final SHMImodel for the years 2005/6 to 2009/10. These
are the sort of graphs that could be used to monitor hospital
deaths.17 An outlier is defined as a point above the 3 standard
errors line. Table 4⇓ gives the outlying hospital trusts by year.
These hospitals have all been identified previously by other
measures as having high mortality, and some hospitals appear
in more than one year.

Discussion
The summary hospital mortality index (SHMI) is a transparent
and reproducible indicator for hospital associated mortality,
capturing death in all admissions except maternity ones up to
30 days after discharge. The index includes palliative care and
emergency admissions with zero length of stay. Using a model
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fitted separately for each of 138 reasons for admission and
adjusting for age, sex, type of admission, and comorbidity had
good performance, with an overall C statistic of 0.911, which
is comparable to models derived in other settings, such as one
study18 that obtained a C statistic of 0.8 using as predictors age,
sex, ICD score, nursing home residency, and drug use. The
method of using a model fitted separately for each admission
diagnosis is utilised in mortality indicators employed
internationally.

Case mix variables in SHMI model
At different ages women are more or less likely than men to be
admitted to hospital. However, women who are admitted are
less likely to die than men at every age over 14 years. These
facts mean that prediction models for hospital mortality usually
have to include both age and sex. Having a planned or unplanned
admission is also universally recognised as an important
predictor of outcome. Ourmodel was also improved by adjusting
for comorbidity, but we recognise that the Charlson comorbidity
score that we used may not be the perfect tool. This score was
originally calibrated in 1984,10 since when updated weights have
been calculated2 and were used in our study. It would, however,
have been preferable to calibrate the weights on the dataset
being scrutinised.19 20 More advanced scores differentiate
between secondary diagnoses for conditions present on
admission and newly acquired conditions present on discharge,21
a facility not currently available in the hospital episode statistics.
An alternative method for calculating hospital standardised
mortality ratios is to include hospital as a term in the logistic
regression model, together with age, sex, type of admission,
and comorbidities. In that way, the estimated coefficients for
each hospital indicate their relative performance. We could not
try this because we estimated the model separately for each
diagnosis group. We did not include hospital as a predictor of
deaths in the model as this may remove part of the variability
associated with poor care when comparing the observed number
of deaths with the expected number. As a consequence we could
not test whether the coefficient for a risk factor differed by
hospital (the “constant risk fallacy”).22

Deaths in hospital and within 30 days of
discharge
The SHMI includes a follow-up time of 30 days after discharge.
This raises two important questions. Firstly, is 30 days the right
time frame and, secondly, should time be measured from
admission or from discharge?
In response to the question of the time frame there is clearly a
need to balance two contrary needs. Firstly, there is a need to
use a short time frame so that it is more likely that the outcome
is connected to the intervention being evaluated (in this case
the quality of hospital care) rather than other later interventions
such as social and community care after discharge. Secondly,
there is a need to use a long time frame to catch all the late
effects of care. On balance 30 days seems to be a reasonable
compromise.
The Scottish hospital standardised mortality ratio also uses 30
days but it measures mortality from admission not from
discharge. One advantage of using time from admission is that
it defines a fixed window that is the same for all patients and
hence for all hospitals, whatever their discharge policies or
opportunities. For example, hospitals treating more deprived,
socially isolated populations may find it harder to discharge
elderly patients than hospitals treating less deprived populations.
Using deaths within 30 days after discharge as a measure of

performance could disadvantage hospitals treating deprived
populations. Time from admission is also conceptually clearer,
since the SHMIwould thenmeasure outcomes for a well defined
cohort of admissions all receiving their care in the same period.
Using 30 days after discharge the SHMI is based on an ill
defined group of admitted patients who were discharged or died
in hospital during the year but who may have been cared for in
previous periods. If time from admission is used, however, then
some patients who die in hospital will be categorised as
survivors in the analyses of the SHMI. These patients are still
receiving hospital care, and hence a SHMI calculated from
admission date would not reflect the totality of hospital care,
only the initial phase of care, and this could create an incentive
for hospitals to shift resources away from patients needing long
term care. For this reason it was decided to use 30 days after
discharge as the time frame in the SHMI.

Missing values
The proper treatment of missing values in risk predictionmodels
is particularly important. We took the pragmatic decision of
putting missing values into a separate category. This meant that
no data were discarded and we could tabulate the proportion of
missing values by hospital, which may itself be a reflection of
hospital quality. A better statistical procedure might have been
some form of imputation. This works well when several
continuous variables are correlated. In our case the categorical
variables were not obviously associated and also it is hard to
see how imputation could be done routinely. Furthermore, in
practice the proportion of missing values was low. The variable
with the greatest proportion of missing values was the index of
multiple deprivation, which is derived from the patient’s post
code and was missing in 6.9% of cases. This proportion was
not evenly distributed between hospitals, as was shown in our
report.9 This variable, however, added little to the discriminatory
ability of the model (fig 1) and was not included in the final
index. Of the variables included in the final model, none had
more than 0.2% missing values. Different methods of handling
the missing values would have a negligible impact on the results.
We would, however, recommend that hospitals routinely report
the proportion of missing values in the variables used in
calculating the index.

Multiple admissions
The Department of Health specified that deaths within 30 days
of discharge should be attributed to the last admitting hospital.
This assigns responsibility for mortality to the hospital that most
recently cared for the patient. Theoretical concerns about this
method exist. Admissions spanning several hospitals maymean
care in an earlier hospital increases the risk of death in the last
hospital. Poor quality care may lead to an emergency transfer
to another hospital, with the potential for death in the receiving
hospital. The specification could promote premature
uncoordinated discharges from a hospital, as subsequent
admissions may occur in a different hospital, where the patient
eventually dies. Methods to account for these scenarios exist,
including by Dr Foster, which assigns a death to all hospitals
involved in an admission that spans several hospitals. In reality,
however, admissions spanning several hospitals only account
for less than 1% of admissions. In addition, as most hospitals
serve a geographical area, readmissions are often to the same
hospital. This raises another problem since a hospital that admits
and discharges a patient who is then readmitted and subsequently
dies within 30 days of the first admission to that hospital, will
have reduced its death rate since it will have increased the
number of admissions for each death. As the death rate was only
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4%, however, increasing the denominator of the rate will only
change the death rate by a small amount.

Identifying poorly performing hospitals
Althoughwe investigated the properties of the SHMI, this should
not be taken to suggest that we unequivocally endorse the use
of hospital mortality indicators to monitor quality of care. The
main question has not been addressed: does high standardised
mortality imply poor care? Although some hospitals with high
mortality indicators have been shown to have poor quality of
care, such as Mid-Staffordshire NHS Foundation Trust one
would also need to investigate hospitals with a low SHMI and
determine if they had high quality of care. It is possible that
poor standards of care exist in some areas in all hospitals, and
so simply targeting some hospitals at one end of the spectrum
and finding care lacking does not mean that it is not lacking at
the other end of the spectrum. There are many other questions,
such as whether hospital mortality can ever be a good quality
indicator owing to the large proportion of unavoidable deaths7;
only a limited set of candidate case mix variables are available
for adjustment and some important ones may be missing (the
so called case mix fallacy7); standardisation depends on how
reason for admission and secondary diagnoses are coded, which
can lead to artificial differences between hospitals4 as well as
creating the potential for gaming14; and indirectly standardised
measures are used, which are not strictly comparable.23

Nevertheless, it is essential to have some method, however
uncertain, to flag up potentially poorly performing hospitals
that may warrant further investigation to safeguard the lives of
patients. Using hospital mortality measures such as the SHMI
to do this also means that the play of chance needs to be ruled
out, because in any league table someone has to come top. We
used funnel plots to show the variation between hospitals, and
included two warning lines to highlight outlying hospitals. The
calculation of these warning lines requires some choices, such
as which hospitals to exclude or trim when estimating that part
of the variability of the SHMI that occurs owing to the play of
chance. The choice of a 10% trim is arbitrary. Reducing the
percentage of hospitals excluded would increase the width of
the warning lines and identify fewer outlying hospitals.
Given these uncertainties, what should be done when a hospital
is identified as having an outlying SHMI? We think that there
are several questions that should be asked before more detailed
investigations ensue (box).
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Questions to be asked of outlying hospitals

Does the outlying performance persist over time?
Is this performance sensitive to the methods used? For example, is it sensitive to how the standardisation is carried out or the weightings
used?
Is it sensitive to how the control limits are calculated? Is any change in a hospital’s SHMI the result of a change in the observed death
rate or the expected death rate? If the expected rate has changed are there changes in the variables used for standardisation?
Is there any corroborating evidence from related quality of care indicators?

What is already known on this topic

Several mortality indices exist, including Dr Foster’s hospital standardised mortality ratio (HSMR)
These indices are, however, based on in-hospital mortality and a subset of admissions

What this study adds

A new summary hospital mortality index (SHMI) was adopted by the NHS in October 2011 and is derived using all admissions and
deaths in hospital and within 30 days of discharge
This index is transparent and based on a limited number of predictors: diagnosis on admission, age, sex, type of admission, and Charlson
comorbidity score
The SHMI identified the hospitals that had already been highlighted as having a high mortality by Dr Foster

Tables

Table 1| Proposed specification by technical group for summary hospital mortality index (SHMI) compared with Dr Foster’s hospital
standardised mortality ratio (HSMR)

HSMRSHMIProperties

In-hospital mortalityMortality up to 30 days after dischargeIndicator

Admissions from 56 of 259 diagnostic groups accounting for 83%
of in-hospital deaths

100% of deathsProportion of deaths reported

Day casesDay casesExcluded admissions

Age and sex, type of admission, month of admission, year of
discharge, deprivation, comorbidity, number of emergency
admissions in previous 12 months, palliative care, ethnicity, source
of admission

Candidate variables: age and sex, type of admission,
year of discharge, deprivation, comorbidity, number of
admissions in previous 12 months

Variables

Exclusion of episodes with missing age, sex, type of admission, and
year of discharge

No exclusion, to maintain 100% of deathsMissing values

Assigned to all hospitals involved in admissionAssigned to last admitting hospitalDeaths in admissions spanning
hospitals
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Table 2| Distribution of admissions by age, sex, and death in hospital or within 30 days of discharge in England, 1 April 2005 to 30 September
2010

FemalesMalesAge group

TotalNo (%) of deathsTotalNo (%) of deaths

976 3817265 (0.7)1 242 3599023 (0.7)<1

664 736847 (0.1)896 570990 (0.1)1-4

775 2431014 (0.1)969 2561157 (0.1)5-14

1 335 4801974 (0.1)1 215 6643132 (0.3)15-24

1 383 3343744 (0.3)1 277 4165117 (0.4)25-34

1 692 04011 277 (0.7)1 697 03213 279 (0.8)35-44

1 803 34626 078 (1.4)1 895 81531 299 (1.7)45-54

2 084 58958 855 (2.8)2 472 29779 815 (3.2)55-64

2 398 270113 757 (4.7)2 839 494156 178 (5.5)65-74

2 924 310257 784 (8.8)2 700 884269 426 (10.0)75-84

2 067 313329 350 (15.9)1 114 540195 446 (17.5)>85

23 391696 (3.0)32 844878 (2.7)Missing

18 128 433812 641 (4.5)18 354 171765 740 (4.2)Total

6089 admissions were excluded owing to missing data on sex variable.
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Table 3| Distribution of deaths by types of admission, index of multiple deprivation score, and Charlson comorbidity score (all secondary
diagnoses) in England, 1 April 2005 to 30 September 2010

All admissions (% of total)No (%) of deathsVariables

Type of admission:

27 395 986 (75.1)1 501 055 (5.5)Emergency

9 057 433 (24.8)76 748 (0.8)Elective

35 274 (0.1)847 (2.4)Missing

Index of multiple deprivation fifth:

8 874 140 (24.3)346 890 (3.9)1 (least deprived)

7 439 153 (20.4)328 466 (4.4)2

6 815 773 (18.7)318 109 (4.7)3

6 329 181 (17.3)301 006 (4.8)4

5 697 075 (15.6)259 536 (4.6)5 (most deprived)

1 333 371 (3.7)24 643 (1.8)Missing

Charlson comorbidity score:

25 935 482 (71.1)507 279 (2.0)0

4 702 488 (12.9)192 125 (4.1)1-5

5 850 723 (16.0)879 246 (15.0)>5

36 488 693 (100)1 578 650 (4.3)Total
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Table 4| Outlying hospitals by year

HospitalsYear

Mid-Staffordshire NHS Foundation Trust, George Elliot Hospital NHS Trust, North Middlesex University Hospital NHS Trust, and Kettering General
Hospital NHS Trust

2005/6

Mid-Staffordshire NHS Foundation Trust and Blackpool, Fylde and Wyre Hospitals NHS Foundation Trust2006/7

Basildon and Thurrock University Hospitals NHS Foundation Trust and Hull and East Yorkshire Hospitals NHS Trust2007/8

Basildon and Thurrock University Hospitals NHS Foundation Trust, Royal Bolton Hospital NHS Foundation Trust, and Blackpool, Fylde and Wyre
Hospitals NHS Foundation Trust

2008/9

Blackpool, Fylde and Wyre Hospitals NHS Foundation Trust and Hull and East Yorkshire Hospitals NHS Trust2009/10
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Figures

Fig 1 Diffsum plots showing summary hospital mortality index final model versus age and sex; final model versus final
model plus deprivation score, final model versus final model plus number of emergency admissions in past 12 months, and
final model versus final model plus age×comorbidity interaction. Dotted lines show a 5% change in expected values
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Fig 2 Funnel plots showing expected number of deaths and summary hospital mortality index (SHMI) for years 2005/6 to
2009/10. A random effects model with a 10% level of trimming was used to calculate 95% and 99.9% control lines
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