Intended for healthcare professionals

CCBYNC Open access
Research

Estimating the population impact of screening strategies for identifying and treating people at high risk of cardiovascular disease: modelling study

BMJ 2010; 340 doi: https://doi.org/10.1136/bmj.c1693 (Published 25 April 2010) Cite this as: BMJ 2010;340:c1693
  1. Parinya Chamnan, PhD student1,
  2. Rebecca K Simmons, research fellow1,
  3. Kay-Tee Khaw, professor of clinical gerontology2,
  4. Nicholas J Wareham, director1,
  5. Simon J Griffin, programme leader1
  1. 1MRC Epidemiology Unit, Institute of Metabolic Science, Box 285, Addenbrooke’s Hospital, Cambridge CB2 0QQ
  2. 2Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge CB2 2SR
  1. Correspondence to: S J Griffin simon.griffin{at}mrc-epid.cam.ac.uk
  • Accepted 18 January 2010

Abstract

Objective To estimate the potential population impact of different screening strategies for identifying and treating people at high risk of cardiovascular disease, including strategies using routine data for cardiovascular risk stratification, in light of the UK government’s recommended national strategy to screen all adults aged 40-74 for cardiovascular risk.

Design Modelling study using data from a prospective cohort, EPIC-Norfolk (European Prospective Investigation of Cancer-Norfolk).

Setting An English county.

Participants 16 970 men and women aged 40-74 and free from cardiovascular disease and diabetes at baseline.

Main outcome measures The main outcomes were the population attributable fraction, the number needed to screen to prevent one new case of cardiovascular disease, the number needed to treat to prevent one new case of cardiovascular disease, and the number of new cardiovascular events that could be prevented. Relative risk reductions for estimated treatment effects were derived from meta-analyses of clinical trials or guidelines from the National Institute for Health and Clinical Excellence.

Results 1362 cardiovascular events occurred over 183 586 person years of follow-up. Compared with the recommended government strategy, a stepwise screening approach using a simple risk score incorporating routine data could prevent a similar number (lower to upper estimates) of new cardiovascular events annually in the United Kingdom (26 789, 20 778 to 36 239) and 25 134 (19 450 to 34 134), respectively) but requiring only 60% of the population to be invited to attend a vascular risk assessment. A similar number of cardiovascular events (25 016, 19 563 to 33 372) could also be prevented by inviting everyone aged 50-74 for a vascular assessment. Using a participant completed Finnish diabetes risk score questionnaire or anthropometric cut-off points for risk prestratification was less effective.

Conclusions Compared with the UK government’s recommended national strategy to screen all adults aged 40-74 for cardiovascular risk, an approach using routine data for cardiovascular risk stratification before inviting people at high risk for a vascular risk assessment may be similarly effective at preventing new cases of cardiovascular disease, with potential cost savings.

Footnotes

  • We thank the EPIC-Norfolk participants and the EPIC-Norfolk team for their contributions.

  • Contributors: PC had full access to all the data in the study and takes responsibility for the accuracy of the data analysis. SJG is guarantor. K-TK and NJW acquired the data and take responsibility for the integrity of the data. PC, RKS, and SJG conceived and designed the study and drafted the manuscript. PC, RKS, NJW, and SJG analysed and interpreted the data. RKS, K-TK, NJW, and SJG critically revised the manuscript for important intellectual content. PC, RKS, and SJG carried out the statistical analysis. K-TK, NJW, and SJG obtained funding. NJW and SJG provided administrative, technical, and material support.

  • Funding: This study was supported by the Medical Research Council (grant No G950223), Cancer Research UK (grant No C8648A3883), and European Union (Europe Against Cancer Programme No 6438). PC is supported by a Royal Thai Government scholarship. SJG receives support from the National Institute for Health Research programme grant funding scheme (RP-PG-0606-1259). The views expressed in this publication are those of the authors and not necessarily those of the NHS, National Institute for Health Research, or Department of Health. The sponsors did not participate in the design or conduct of this study; in the collection, management, analysis, or interpretation of data; in the writing of the manuscript; or in the preparation, review, approval, or decision to submit this manuscript for publication.

  • Competing interests: All authors have completed the unified competing interest form at www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and declare (1) no financial support for the submitted work from anyone other than their employer; (2) no financial relationships with commercial entities that might have an interest in the submitted work; (3) no spouses, partners, or children with relationships with commercial entities that might have an interest in the submitted work; and (4) no non-financial interests that may be relevant to the submitted work.

  • Ethical approval: This study was approved by the Norwich district health authority ethics committee.

  • Data sharing: No additional data available.

This is an open-access article distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license. See: http://creativecommons.org/licenses/by-nc/2.0/ and http://creativecommons.org/licenses/by-nc/2.0/legalcode.

View Full Text