Oxygen transport2. Tissue hypoxia
BMJ 1998; 317 doi: https://doi.org/10.1136/bmj.317.7169.1370 (Published 14 November 1998) Cite this as: BMJ 1998;317:1370- R M Leach,
- D F Treacher
Tissues vary considerably in their sensitivity to hypoxia. Neurological cells tolerate hypoxia for only a few minutes whereas bladder smooth muscle may survive for several days without oxygen. This has important implications in the management of oxygen transport and monitoring of tissue hypoxia in critically ill patients.
Regional oxygen transport and cellular use are often neglected but are important in maintaining tissue function and overall survival
Oxygen transport
Delivery to organs and tissues
The mechanisms controlling oxygen distribution are incompletely understood but involve a series of convective and diffusive processes. Convective oxygen transport refers to the bulk movement of oxygen in air or blood and depends on active, energy consuming processes generating flow in the tracheobronchial tree and circulation. Diffusive transport refers to the passive movement of oxygen down its concentration gradient across tissue barriers, including the alveolar-capillary membrane, and across the extracellular matrix between the tissue capillaries and individual cells to mitochondria. The amount of diffusive oxygen movement depends on the oxygen tension gradient and the diffusion distance.
In many critically ill patients tissue hypoxia is due to disordered regional distribution of blood flow both between and within organs. Regional and microcirculatory distribution of cardiac output is determined by a complex interaction of endothelial, receptor, neural, metabolic, and pharmacological factors working on small resistance arterioles and precapillary sphincters. In critical illness, particularly sepsis, hypotension and loss of normal autoregulation cause shunting and tissue hypoxia in some organs despite high global oxygen delivery and mixed venous saturation. The perfusion pressure is an important determinant of regional perfusion, but adrenaline or noradrenaline given to maintain systemic blood pressure may reduce regional distribution, particularly to the renal and splanchnic capillary beds.
Log in
Log in using your username and password
Log in through your institution
Subscribe from £184 *
Subscribe and get access to all BMJ articles, and much more.
* For online subscription
Access this article for 1 day for:
£50 / $60/ €56 (excludes VAT)
You can download a PDF version for your personal record.