Responisbility for effective provision of the service includes all doctors. Who is not a manager?
CHARLES D SHAW
Unit General Manager,
Cheltenham General Hospital,
Cheltenham GL53 7AN
1 National Health Service Training Authority. Better management, better health. Bristol:
National Health Service Training Authority, 1986. (Chairman: J Done.)
2 National Health Service Training Authority. Developing the role of doctors in the management
of the National Health Service: a discussion document. Bristol: National Health Service
Training Authority, 1986.

Bromhiloalveolar carcinoma

Bromhiloalveolar carcinoma accounts for less than 3% of all
primary lung cancers but has attracted disproportionate
interest because of its intriguing clinical behaviour
and unusual pathological appearance. Indeed, pathologist
have been so exercised by this tumour that some have given it 36
different names while others claim that it does not exist at
all.1

Tumour cells of many different origins may adopt a similar
histological pattern in the distal airway, and the term
bromhiloalveolar carcinoma is confined to those originating
in bronchioles or alveoli; it excludes metastasising adeno-
carcinomas from the bronchus or distant sites.2 The tumour
may arise from ciliated, mucinous, or Clara cells in the
bromchial epithelium or from type II pneumocytes in the
alveolus. The cells all grow as a single layer along the walls
of the airspaces, and the unusual environment of the alveolus—
with a plentiful supply of food, oxygen, water, and space—
probably encourages many different cells to grow in the same
way.

The cause of bromhiloalveolar carcinoma is equally
uncertain and interesting. Smoking and gender appear to be
unimportant, while pre-existing lung damage—either
local scarring or diffuse pulmonary fibrosis—is definitely
associated. The strange case report of a man who developed
the carcinoma after habitually going to bed with his mouth
full of olive oil led to suggestions of a link with the inhalation
of oil,3 although such a history is rare. The pathological
similarity between bromhiloalveolar carcinoma and the
viral disease of sheep jaagsiekte suggests an infectious
cause, but epidemiological evidence does not support this
theory.

Clinically bromhiloalveolar carcinoma has two distinct
forms.4,5 More common is an unremarkable peripheral lung
tumour that may be diagnosed by needle biopsy: metastases
are unusual, and five year survival after surgery is 70%.
The second form is more distinctive and presents radio-
graphically as consolidation affecting one or more separate
lobes or segments. About 10% of these patients have
bromchonbronchoa, and spread is assumed to be airborne,
although a multifocal origin cannot be ruled out. Regional
and distant metastases occur less commonly than in other
lung cancers, and death may therefore be from respiratory
failure as more and more of the lung becomes occupied by the
tumour. Because this type of bromhiloalveolar carcinoma is
widely spread surgery is ineffective, and neither radiotherapy
nor chemotherapy help. Nevertheless, the tumour may grow
slowly, and some patients live for three years after the

diagnosis. Both forms of the carcinoma (as well as the
metastatic adenocarcinoma) may progress to widespread
pulmonary nodules, and at this stage it is uncertain whether
spread occurs by blood or airways.

Recently attempts have been made to classify bromhilo-
alveolar carcinoma cytologically into mucinous (secretory),
non-mucinous (non-secretory), and undifferentiated groups.6,7
The mucinous variety tends to associate with
multifocal disease, and the non-mucinous with peripheral
nodules, while distant metastases are more common in the
undifferentiated group; but these correlations are imprecise.
Since bromhiloalveolar carcinoma represents many
tumours with similar histological appearance clinicopatho-
logical correlations will remain difficult until the cell of origin
can be identified more reliably.

DUNCAN M GEDDES
Consultant Physician,
Brompton Hospital,
London SW3 6HP

Arméd Forces Institute of Pathology 1980:127-147.
2 Schraufnagel D, Puleo A, Port JAF, et al. Differentiating bronchiholo-alveolar carcinoma from
3 Maseen PPV, Lawes JH, van den Tweel JG. Bronchhlo-alveolar carcinoma after inhalation of

Haematology, ethnography, and thrombosis

The activities of the coagulation and fibrinolytic systems and
the reactivity of platelets vary as widely as the haematological
indices measured by a "full blood count." Such differences
are of interest to those who wish to understand thrombosis: if
those at high risk of thrombosis could be identified by examining
factors that promote or control fibrin and platelet
deposition steps might be taken to prevent the thrombosis.
Identifying relations between blood values and thrombosis
has not proved easy. In certain individuals thrombosis is
linked to a congenital deficiency of certain blood factors—
for example, antithrombin III, protein C, or plasminogen
activator—but such deficiency states are rare and in most
people the reason for a thrombosis is unknown. The main
reason for our slowness in getting to grips with the problem
may be that blood values change dramatically after a
thrombosis.
The prospective approach is most likely to yield
information, since several studies of patients at high risk of venous
thromboembolism—for example, surgical patients—have
suggested a relation between haematological values and
thrombosis. For example, evidence of "hypercoagulability"
(short activated partial thromboplastin time, higher factor
VIII activity, higher concentrations of fibrinogen and fibrin
degradation products, and prolonged euglobin lysis time)
was found preoperatively in plasma from surgical patients
who went on to develop venous thromboembolism.12

The information that we have for arterial thrombosis is
derived from a few very large studies in which haematological