ART OF MEDICINE

An outbreak of humidifier fever on a warship

During the summer of 1981 a sailor from the warship HMS Sheffield mentioned a curious illness affecting his messmates. They would embark after weekend leave and, by late afternoon on Monday, they would have chills, aches, sweats, dry coughs, and sore throats. These symptoms would largely subside through the week and, by the weekend, had disappeared, only to recur the following Monday. Each week the same pattern was repeated. The ship was coming to the end of a prolonged maintenance period, and the ventilation system had recently been restarted after a lengthy shutdown.

Inspection of the ship’s sickness log revealed a high number of sick bay attendances on Tuesday and Wednesday mornings from members of one messdeck. All 20 of them gave a similar story of typical symptoms with a periodicity characteristic of humidifier fever. The messdeck itself was dank and chilly. Inside the air treatment units there was a fluffy, white mould, subsequently identified as an actinomycete species—to which all 20 of the men had precipitating antibodies. The remedy was simple. The air treatment units throughout the ship were dismantled and cleaned. It was the damp, stagnant atmospheric conditions which allowed fungal colonisation during ventilation system shutdown. An aerosol of fungal spores was then blown into the messdeck when the ventilation was restarted.

Ironically the messdeck was blown apart a few months later when, on 4 May 1982, an Argentine Exocet missile slammed into HMS Sheffield and destroyed her. She is now a designated war grave for the 20 men lost with her.

Mark Edmondstone, retired consultant physician, Winchester, UK

We welcome contributions to this column via our online editorial office: https://mc.manuscriptcentral.com/bmj.

Cite this as: BMJ 2017;356:j227

PRACTICE UPDATES

NHS reality check
In a report from the Royal College of Physicians, NHS reality check: Delivering care under pressure, a survey of 2100 RCP members has shown that:
- 74% of physicians are worried about the ability of their service to deliver safe patient care in the next 12 months
- Over half of physicians believe patient safety has deteriorated, 84% have experienced staffing shortages in their team, and 82% believe the workforce is demoralised
- Only one in five of the doctors surveyed knew who their “freedom to speak up guardian” was at their NHS trust, and less than a third believed that guardians have helped improve the culture of transparency and raising concerns in their organisation.

http://bit.ly/2nEiEKO

Health of employees
NICE has published a quality standard on mental and physical health and wellbeing of employees. It states that:
- Organisations should have a named senior manager who makes employee health and wellbeing a core priority
- Managers should be trained to recognise stress and should support employees’ health and wellbeing
- Employees should have the opportunity to contribute to decision making through staff engagement forums.

FAST FACT—INTRAVENOUS ANTIBIOTICS FOR COMMUNITY ACQUIRED PNEUMONIA

Patients with community acquired pneumonia should receive intravenous antibiotics if they have the following:
- High severity pneumonia (CURB-65 score ≥3)
- Functional or anatomical reasons for malabsorption
- Impaired consciousness
- Impaired swallowing reflex.

For more information visit BMJ Learning (http://bit.ly/2mTGSGF).

You can gain CPD points from your reading by recording and reflecting on what you have read in your appraisal folder. We suggest allowing half an hour to read and reflect on each BMJ education article.

CPD READING

0.5 HOURS

If you see a Learning module logo log onto http://learning.bmj.com to complete the online module.

We print a statement on financial interests and patient partnership with each education article. We have resolved to reduce the involvement of authors with financial interests that The BMJ judge as relevant. We encourage and make clear how patients have been involved and shaped our content. More details can be found on bmj.com.
Restless legs syndrome (RLS), also known as Willis-Ekbom disease (WED) is a common neurological disorder, which affects sleep and health. Reductions in health related quality of life scores are similar to or worse than those in patients with osteoarthritis, congestive heart failure, depression, or stroke.

Until recently, dopaminergic agents were the first line treatment for this disease, but we now know that these drugs can lead to augmentation of symptoms for many patients. This review assesses the latest evidence on the diagnosis, pathophysiology, and treatment.

What you need to know

- If symptoms are mild, encourage patients to adopt good sleep habits, reduce smoking and caffeine intake and increase daytime exercise
- Consider treatment when symptoms impair patients’ quality of life
- Dopamine agonists have been shown to be effective in treating sensory symptoms, however symptoms may worsen (augmentation) during longer term treatment
- Recent guidelines recommend, whenever possible, to start treatment with α2δ ligands
- The goal of treatment is not to eradicate symptoms completely but to reduce them

Conversely, symptoms usually improve or resolve when the patient begins physical activity; as symptoms arise, patients will experience an intense urge to move in order to relieve the discomfort felt. In addition, the symptoms follow a circadian pattern and are worse in the evening. The symptoms vary considerably in frequency from less than once a month or year to daily; severity ranges from mildly annoying to disabling, and symptoms may also remit for differing periods of time.

How is it diagnosed?

Current diagnostic criteria

RLS is diagnosed by ascertaining symptom patterns that meet the five essential criteria in box 1. These five essential criteria have to be met for a positive diagnosis.

Supporting features

RLS has both a motor symptom—periodic leg movements (PLMs)—and several common clinical patterns that can support a diagnosis, particularly when diagnostic certainty is lacking.

How common is RLS?

RLS affects 5-10% of European and North American adults, with 2-3% experiencing moderate to severe symptoms. Women are affected about twice as often as men. The mean age of onset is during the third or fourth decade, but paediatric cases are not rare with overall paediatric prevalences of 2-4%.

The later in life RLS starts, the more rapid the onset and the greater the likelihood that it is associated with another medical condition such as neuropathy, iron deficiency, or renal disease.

How does it present?

The diagnosis of RLS is made on the basis of the presence of clinical symptoms. RLS is mainly characterised by neurosensory symptoms, which are strong feelings of restlessness and distressing paraesthesia-like sensations in the lower legs. RLS typically manifests when the patient is at rest, and a state of relaxation or comfort is associated with a greater likelihood of symptoms occurring.
Restless legs syndrome (RLS) has been noted to occur commonly in families, indicating important genetic or shared environmental factors for the disease. The risk of RLS is nearly six times higher among first-degree relatives of RLS patients than in other people.

Lack of profound daytime sleepiness
Patients with moderate to severe RLS have chronic short sleep times but generally do not report a level of daytime sleepiness that would be expected for the degree of sleep loss. Profound sleepiness should prompt evaluation for another cause, such as sleep apnoea, narcolepsy, or a drug effect.

Comorbid conditions
A recent review of RLS associated with comorbidities identified an increased prevalence of RLS only in iron deficiency and kidney disease.

Clinical course
A history of remission and relapse in symptoms should be noted as a possible indicator of the subsequent course of the condition. The typical pattern of an insidious onset with gradual progression over a period of years to a clinically significant disease occurs more frequently with early age of onset. However, in some cases, relatively rapid symptom development over months to a few years is reported with a variable degree of symptom progression after onset.

What do we know about the cause of RLS?
RLS is a highly familial trait but genetically complex, with estimates of concordance between 54% and 69% reported in twin studies.

The most compelling argument in favour of a dopaminergic dysfunction is the striking improvement in symptoms with dopaminergic drugs. However, the mechanism of this improvement has never been fully elucidated.

Iron deficiency has also repeatedly been shown to be associated with RLS. The mechanism by which iron deficiency leads to dopaminergic dysfunction is unclear. Iron has a complex effect on dopaminergic function. It is a cofactor for tyrosine hydroxylase and is integral to D2 receptor function. Other systems, such as the opiate, glutamate, adenosine, and hypocretin systems, might also be involved and might thus be future targets of drug action.

How do we diagnose RLS?
Basic laboratory evaluation
Laboratory parameters include complete blood cell count, markers of kidney and liver function, iron metabolism, inflammation, endocrine function (glucose, thyroid hormones), and vitamins (B12, D, and folic acid). Basic biochemistry is also needed, with determination of plasma concentrations of glucose, creatinine, urea, potassium, calcium, and sodium.

For iron metabolism, two variables are of special interest:
- Serum ferritin—Serum ferritin concentrations below 50 ng/mL (<50 μg/L) have been associated with RLS, even in the absence of decreased haemoglobin or serum iron concentrations.
- A high soluble transferrin receptor (sTR) concentration is considered to be the initial response to declining body iron supply.

Other investigations
In addition to urinalysis, a 12 or 24 hour urine collection for creatinine clearance...
should be done to determine the glomerular filtration rate in patients at risk of kidney disease. Declining renal function is associated with increasing prevalence of RLS.

Electromyography and nerve conduction studies should be used primarily when peripheral neuropathy is suspected on clinical grounds.

In certain cases, extensive complementary tests (MRI, special cerebrospinal fluid and serum determination, venous ultrasonography of the legs) should be carried out to confirm the existence of other factors and conditions that may contribute to so called “comorbid RLS,” such as lumbosacral radiculopathy, Lyme disease, monoclonal gammopathy of undetermined significance, myelopathy, or myelitis.

How do we manage patients with RLS?

Patients who are diagnosed as having RLS will have already tried and tested many non-drug options by the time they seek medical assistance (eg, activities that keep them concentrated, avoidance of caffeine and alcohol, hot baths). Use of drugs that are known to exacerbate RLS symptoms should also be reconsidered—these include antihistamines, dopamine antagonists, anti-nausea drugs, antidepressants, serotonergic reuptake inhibitors, neuroleptics, β blockers, some anticonvulsants, and lithium.

Furthermore, measures (including oral iron supplements and, in some cases, intravenous iron administration) should taken to ensure that ferritin concentrations are raised above 50 ng/mL.

Which treatment works best?

Two types of drugs have been extensively investigated for the treatment of RLS: dopamine agonists and α2δ ligands. Both have been shown to be clinically effective in treating sensory symptoms. Dopamine agonists are more effective in treating PLMs, whereas α2δ ligands are effective in consolidating sleep. Several large retrospective cohort studies have examined augmentation rates during long term treatment (5-10 years) with dopaminergic agonists, showing rates of dopaminergic augmentation and no improvement in more than 40% of patients.

Because of the link between dopaminergic treatment and a progressive loss of response, the most recent international guidelines recommend that whenever possible the initial treatment of choice should be an α2δ ligand.

Furthermore, recent studies have reported on the efficacy of opioids for the treatment of RLS, when resistant to dopamine agonists. Recent guidelines have taken these new data into account and highlight that a low dose of an opioid (prolonged release oxycodone or methadone) may be considered in patients with very severe augmentation.

Long term treatment of RLS

During long term treatment of RLS, plasma ferritin concentrations should be kept over 50-75 μg/mL, by using oral iron if necessary. Drugs that are known to exacerbate RLS, such as antidepressants, antihistamines, or dopamine blockers, should obviously be avoided unless strictly necessary. Patients should be encouraged to have good sleep hygiene with regular bedtimes.

If a patient is already being treated with a dopaminergic agent, the lowest possible cumulative daily dose should be used to control the most bothersome RLS symptoms, and the total daily dose should never exceed maximum recommended levels (pramipexole 0.5 mg, ropinirole 4 mg, rotigotine 3 mg). Physicians should explain to patients that the goal of treatment is not to eradicate symptoms completely but to ensure that they do not interfere with quality of life. If symptoms become bothersome, the dose can be increased cautiously, but this will increase the risk of development of augmentation (fig 2). A non-dopaminergic agent can be added if concerns about the dose of the dopaminergic drug occur.

Intermittent (non-daily) treatment of RLS to prevent augmentation

Starting daily treatment of RLS should be deferred as long as possible until symptoms occur almost daily.

Fluctuating RLS symptoms

In patients with a history of notable fluctuating RLS symptoms, intermittently attempting to reduce the dose or even discontinue the drug may be appropriate to ensure that they are being treated with the lowest effective dose.

Competing interests: We have read and understood the BMJ policy on declaration of interests and declare the following interests: DG-B has received research grants from UCB and Xenoport. Find the full version with references at http://dx.doi.org/10.1136/bmj.j104
 Patients who experience depersonalisation and derealisation often have difficulty in describing their symptoms. They experience a sense of unreality and detachment from their sense of themselves (depersonalisation: DP) or their perception of the world (derealisation: DR). In most cases these two symptoms co-occur. This article aims to help clinicians recognise depersonalisation and derealisation (DP DR) symptoms, diagnose the disorder, and discuss current treatment options.

WHAT YOU NEED TO KNOW

- Depersonalisation and derealisation symptoms include having a sense of unreality and detachment; patients may describe using phrases such as “it is as if…”
- Symptoms are often triggered by adverse life events, severe anxiety, or cannabis use
- Transient symptoms of less than a couple of weeks’ duration are common and need no intervention
- Distinguish symptoms of depersonalisation and derealisation that are secondary to another medical or psychiatric diagnosis and treat the underlying problem
- Refer those who appear to have persistent symptoms to a psychiatrist for consideration of primary depersonalisation derealisation disorder

PRACTICE POINTER

Depersonalisation and derealisation

Elaine C M Hunter, Jane Charlton, Anthony S David

Correspondence to: Elaine C M Hunter Elaine.hunter@slam.nhs.uk

Patients who experience depersonalisation and derealisation often have difficulty in describing their symptoms. They experience a sense of unreality and detachment from their sense of themselves (depersonalisation: DP) or their perception of the world (derealisation: DR). In most cases these two symptoms co-occur. This article aims to help clinicians recognise depersonalisation and derealisation (DP DR) symptoms, diagnose the disorder, and discuss current treatment options.

WHAT YOU NEED TO KNOW

- Depersonalisation and derealisation symptoms include having a sense of unreality and detachment; patients may describe using phrases such as “it is as if…”
- Symptoms are often triggered by adverse life events, severe anxiety, or cannabis use
- Transient symptoms of less than a couple of weeks’ duration are common and need no intervention
- Distinguish symptoms of depersonalisation and derealisation that are secondary to another medical or psychiatric diagnosis and treat the underlying problem
- Refer those who appear to have persistent symptoms to a psychiatrist for consideration of primary depersonalisation derealisation disorder

HOW PATIENTS WERE INVOLVED IN THE CREATION OF THIS ARTICLE

The article was co-written by a patient with longstanding DPRD who contributed at every stage in the process. We also had another patient contributor and a patient reviewer.

The patients wished to emphasise the importance of clinicians recognising that DP DR symptoms can occur as a primary diagnosis, distinct from anxiety and depression, as so many people with DP DR symptoms are misdiagnosed resulting in distress and delay in treatment. They also wanted to stress that although there is no definitive treatment, recovery is possible for many people with DPRD.
Who experiences depersonalisation and derealisation?

Otherwise healthy people—Transient symptoms of depersonalisation and derealisation are very common in the general population, often during periods of stress or fatigue. One US phone study of more than 1000 people found that nearly a quarter reported a brief episode over the previous one year period.

Those with a range of physical and mental health conditions—Such symptoms are also commonly associated with several medical conditions, such as migraine and temporal lobe epilepsy, and with psychiatric conditions, particularly anxiety disorders, such as panic, depression, or in those with complex post-traumatic stress or personality disorders who report a history of childhood abuse or trauma.

Those with depersonalisation and derealisation disorder as a primary diagnosis—Less well known is that the symptoms of depersonalisation and derealisation can also occur as a chronic primary mental health disorder called depersonalisation derealisation disorder (DPRD). These symptoms can cause distress and affect quality of life and function. Case series from the UK, Germany, and the US find the primary disorder of DPRD affects men and women roughly equally. Several robust epidemiological surveys indicate prevalence rates over the past month of clinically significant DPRD at around 1% of the general population and at 5% within psychiatric outpatient samples. Data suggest that DPRD can be underdiagnosed, or the diagnosis is delayed, with patients typically waiting between seven and 12 years for a diagnosis. If left untreated the disorder can have an unremitting course lasting years. Patients report that early diagnosis and information-giving help alleviate the distress typically associated with this condition and promote recovery.

PERSONAL ACCOUNT

My depersonalisation started after severe anxiety with acute physical symptoms. I started being hyper aware of my every movement, word, and breath. When I looked at my hands they felt like they didn’t belong to me, my voice was like it was not my own, and I was totally detached looking in a mirror. It was as if I was living in a dream, my head felt very foggy, and I was very numb. I remember at its worse that I would laugh or cry but feel nothing. Already suffering from anxiety, once I fell into the depersonalisation as well I very quickly was on a hamster wheel: I worried about this feeling, which of course fed my anxiety. I couldn’t eat or sleep or enjoy anything anymore. I was put on antidepressants, which helped with the anxiety, and I have been on them ever since (around 20 years). True recovery only started to come to me when, very luckily, I managed to get in touch with a clinical psychologist. I started cognitive behavioural therapy (CBT) specialising in depersonalisation and anxiety, which taught me to not be scared and run away from the feelings. Once I understood what this condition was, and was told it is actually very common and there were lots of people out there like me that had experienced similar symptoms, and most importantly recovered, I started to feel a lot calmer about it, and it felt less like I was being attacked by some strange force.

When I looked at my hands they felt like they didn’t belong to me, my voice was like it was not my own, and I was totally detached looking in a mirror.

Box 1 | What your patient might say

I feel as if I’m living in a dream.
I feel like I don’t (or the world doesn’t) exist anymore.
I feel completely detached from everything or everyone around me.
It’s like I’m just watching life from behind glass/projected onto a screen/in a fog.
I’m robotically going through the motions of being alive but feel dead inside.

The infographic that accompanies this article summarises the main categories of people who experience depersonalisation and derealisation.

What symptoms do people describe?

Patients might use the language in box 1 when putting their experience into words. Such phrases used by patients might suggest the need for further questioning. Alongside the core symptoms of unreality and detachment, people with depersonalisation and derealisation can describe emotional numbing of positive and negative emotions, and experiences affecting specific parts, or all, of their body. They might report that parts of their body (their reflection, voice, or hands) don’t feel like they belong to them and that their actions feel robotic. They might experience blurred vision or perceptual distortions, such as seeing the world in two dimensions. Obsessive existential thoughts about the meaning of life might be present. The person might complain about difficulty concentrating or remembering but these problems are typically not accompanied by clear-cut objective cognitive deficits such as memory or attention impairments on formal testing.

Patients with depersonalisation and derealisation are aware that their experiences are subjective and do not reflect reality, but might present urgently seeking help because of fears that their symptoms indicate incipient psychosis or brain dysfunction. However, the “as if…” quality to their descriptions helps to distinguish those with depersonalisation and derealisation from those experiencing psychosis, as the former will not have accompanying hallucinations or delusional beliefs.

In US psychiatric classification systems, depersonalisation derealisation disorder is categorised as a dissociative disorder due to the sense of detachment experienced. However it is distinguishable from other dissociative disorders in that discontinuities of memory and identity are rare.

What triggers depersonalisation and derealisation

Current evidence is insufficient to fully characterise or quantify associations with life events or other diagnoses, or to predict who will or won’t develop symptoms. However, what data exist suggest that there are some life events and diagnoses that are associated with transient or intermittent symptoms and with the more chronic disorder.

There is a strong association of depersonalisation or derealisation symptoms starting during a period of acute...
Assessing severity of depersonalisation and derealisation symptoms

Primary care guidance

Transient symptoms of depersonalisation and derealisation are very common in the general population, often during periods of stress or fatigue, or concurrent with a number of medical conditions. They can also occur as a chronic primary mental health disorder called Depersonalisation/Derealisation Disorder (DPRD).

What your patient may say

- It’s like I’m just watching life from behind glass
- I feel completely detached from everything around me
- I feel as if I’m living in a dream
- I feel like I don’t exist anymore

Increasing symptom severity

1. Transient symptoms
 - Mildly distressing
 - Seconds to a few days
 - Typical triggers: Fatigue, Jet lag, Life threatening incidents, After heavy alcohol use, Illicit drug use
 - Comorbidities and risk factors: None
 - Intervention: Give the patient a name for their symptom. Explain why it might have been triggered in their case. Review after 2 weeks. If symptoms persist, consider other levels of severity

2. Secondary to other disorder
 - Moderately distressing
 - Minutes to hours
 - Typical triggers: Panic attack, Aura of migraine or seizure
 - Comorbidities and risk factors: Neurological conditions, Eg. migraine or temporal lobe epilepsy, Psychiatric conditions, Eg. depression or schizophrenia, Anxiety disorders, Particularly those with panic or obsessive compulsive disorder
 - Intervention: Treat primary condition. Anxiety or depression: Psychopharmacological management, Psychological management, Refer for low intensity psychological therapy. Personality disorder: Refer to secondary care services
 - Review after treatment. If symptoms persist, consider primary DPRD

3. Part of PTSD or personality disorder
 - Moderately–severely distressing
 - Months to years
 - Typical triggers: Period of prolonged stress
 - Comorbidities and risk factors: History of significant childhood abuse and trauma, Post-traumatic stress disorder, Personality disorders, Particularly borderline personality disorder
 - Intervention: Treat primary condition. Childhood or adult trauma: Refer for high intensity trauma focused psychological therapy. Personality disorder: Refer to secondary care services
 - Review after treatment. If symptoms persist, consider primary DPRD

4. Primary DPRD
 - Moderately–severely distressing
 - Months to years
 - Onset often in adolescence
 - Typical triggers: Acute stress, Use of illicit drugs, Particularly after cannabis use
 - Comorbidities and risk factors: A history of anxiety problems, Family history of anxiety disorders
 - Intervention: Elicit concerns, and offer reassurance and hope that they can recover. Signpost patient to self help material, online and phone support, particularly recovery stories
 - Review after 2 months. If symptoms persist, refer to local secondary care services for psychiatric assessment and intervention

© 2017 BMJ Publishing group Ltd.

Disclaimer: This infographic is not a validated clinical decision aid. This information is provided without any representations, conditions or warranties that it is accurate or up to date. BMJ and its licensors assume no responsibility for any aspect of treatment administered with the aid of this information. Any reliance placed on this information is strictly at the user's own risk. For the full disclaimer wording see BMJ’s terms and conditions: http://www.bmj.com/company/legal-information/

*CMHT = Community Mental Health Teams

Read the full article online http://bmj.co/DPRD
If there is no significant history of trauma then treat as a primary disorder by following the guidance in this article.

The hardest differential diagnosis is when both an anxiety disorder and depersonalisation derealisation disorder are present and distressing. In these cases it is worthwhile monitoring both conditions on a monthly basis, and if the DP DR does not resolve within a few months, to assume that this is primary DPRD, and to follow the recommendations for this.

Assessing DP DR symptoms—See box 2

How to assess and manage someone with symptoms

The suggested key principles for when someone presents with symptoms of depersonalisation or derealisation are laid out in the infographic (based on tables in appendix files). This guide is compiled based on research evidence and clinical experience from authors based at the specialist London based NHS Depersonalisation Disorder Clinic.

Try to distinguish between transient or intermittent symptoms; those that might be suggestive of a concurrent physical or mental health problem where the DP DR is secondary; or symptoms that are suggestive of the chronic disorder of DPRD. Remember DPRD can be a primary disorder or it can be a comorbid problem in the context of substantial history of trauma or a primary mental health disorder. If the latter, then address this stress. This has led to the current understanding that DP DR is part of a normal physiological or psychological coping mechanism (“like a circuit breaker”) that is designed to protect us from overwhelming anxiety by creating a sense of detachment and numbing. However, in some cases this normally transient coping mechanism can become maintained, leading to the chronic disorder of DPRD.

How to assess and manage someone with symptoms

The presence and severity of symptoms can be assessed by summing scores on two questions: “Over the past two weeks, how often have you been bothered by the experience of

1. Your surroundings feeling detached or unreal, as if there were a veil between you and the outside world, and
2. Out of the blue, you feel strange, as if you were not real or as if you were cut off from the world.”

Scale: 0=not at all; 1=several days; 2=more than half the days; 3=nearly every day. Clinical cut off score of >=3

PERSONAL ACCOUNT

I smoked cannabis one evening while at university. I had smoked once before, a year earlier. Shortly after, I began to feel as though my eyes were fixating on parts of the room, and that I was distanced from my environment. This led to me having a panic attack which was only alleviated when I eventually managed to sleep. In the morning I continued to feel distanced, and as though I was a spectator in my own life. I experienced this constantly for many months. Recovery was a gradual process, firstly of being distracted from the feelings of depersonalisation for longer and longer periods while I was engaged in activities, and then later experiencing extended periods where I was actually conscious of feeling present in the moment. Diagnosis was an important part of my recovery, as was continuing with some normal, daily activities, and distracting myself with engaging activities.

In the morning I continued to feel distanced, and as though I was a spectator in my own life

EDUCATION INTO PRACTICE

Did you know that when patients say things like “I don’t feel real” they may be suffering from depersonalisation disorder? Do you know where to refer patients if you suspect they might be suffering from depersonalisation derealisation disorder?
A 54 year old male smoker of 20 pack years presented with a six week history of fever, anorexia, worsening cough, and dyspnoea. He had previously undergone coronary artery bypass grafting. A chest radiograph showed previous sternotomy, borderline cardiomegaly, pulmonary oedema, right lower zone consolidation, and a right mid zone oval density (figure). What is the diagnosis for this oval density?

Submitted by Timothy Shao Em Tan and Omar Abdulla
Patient consent obtained.
Cite this as: BMJ 2017;356:j1188

A 20 year old man was referred to the emergency department by his general practitioner with a one week history of easy bruising, gum bleeding, and lethargy. He had no medical history and took no regular medications. He did not smoke or drink alcohol and had no travel history. On examination, he appeared unwell and had widespread petechiae with evidence of gum bleeding. The rest of the clinical examination, including fundoscopy, was normal. His observations were: heart rate 110 beats per minute, blood pressure 100/80 mm Hg, temperature 38.5°C, respiratory rate 20 breaths/minute, and oxygen saturations 100% on room air.

Blood results showed: haemoglobin 77 g/L (133-167 g/L), white blood cell count 6×10⁹ cells/L (3.5-11×10⁹ cells/L), neutrophils 1.1×10⁹ cells/L (2.0-7.0×10⁹ cells/L), platelets 45×10⁹/L (150-410×10⁹/L), and C reactive protein level 160 nmol/L (0.76 –28.5 nmol/L). A coagulation screen showed INR 1.9 (0.8-1.1), APTT ratio 1.07 (0.85-1.15), fibrinogen 0.8 g/L (2-4 g/L), and D-dimer 3334 ng/ml (<250 ng/ml). Urea, creatinine, and liver function tests including bilirubin were normal.

His blood film at ×40 magnification (figure) showed large promyelocyte blast cells with bilobed nuclei with azurophilic granules and Auer rods within the cytoplasm. His bone marrow aspirate showed a hypercellular marrow packed with large promyelocyte blast cells containing Auer rods.

Flow cytometry from peripheral blood showed a clonal population of cells that were HLADR–, CD34– CD13+, CD33+ and CD117+. Cytogenetic testing confirmed the presence of t(15;17) abnormality in these cells.

1 What is the diagnosis?
2 What treatments are available for this condition?
3 What follow-up is necessary for this condition?

Submitted by Selina J Chavda, Sophie Lindsay, Fenella Willis, and Mickey Koh
Patient consent obtained.
Cite this as: BMJ 2017;356:j1164

CASE REVIEW

Bruising and abnormal leucocytes on a blood film—a haematological emergency

A 20 year old man was referred to the emergency department by his general practitioner with a one week history of easy bruising, gum bleeding, and lethargy. He had no medical history and took no regular medications. He did not smoke or drink alcohol and had no travel history. On examination, he appeared unwell and had widespread petechiae with evidence of gum bleeding. The rest of the clinical examination, including fundoscopy, was normal. His observations were: heart rate 110 beats per minute, blood pressure 100/80 mm Hg, temperature 38.5°C, respiratory rate 20 breaths/minute, and oxygen saturations 100% on room air.

Blood results showed: haemoglobin 77 g/L (133-167 g/L), white blood cell count 6×10⁹ cells/L (3.5-11×10⁹ cells/L), neutrophils 1.1×10⁹ cells/L (2.0-7.0×10⁹ cells/L), platelets 45×10⁹/L (150-410×10⁹/L), and C reactive protein level 160 nmol/L (0.76 –28.5 nmol/L). A coagulation screen showed INR 1.9 (0.8-1.1), APTT ratio 1.07 (0.85-1.15), fibrinogen 0.8 g/L (2-4 g/L), and D-dimer 3334 ng/ml (<250 ng/ml). Urea, creatinine, and liver function tests including bilirubin were normal.

His blood film at ×40 magnification (figure) showed large promyelocyte blast cells with bilobed nuclei with azurophilic granules and Auer rods within the cytoplasm. His bone marrow aspirate showed a hypercellular marrow packed with large promyelocyte blast cells containing Auer rods.

Flow cytometry from peripheral blood showed a clonal population of cells that were HLADR–, CD34– CD13+, CD33+ and CD117+. Cytogenetic testing confirmed the presence of t(15;17) abnormality in these cells.

1 What is the diagnosis?
2 What treatments are available for this condition?
3 What follow-up is necessary for this condition?

Submitted by Selina J Chavda, Sophie Lindsay, Fenella Willis, and Mickey Koh
Patient consent obtained.
Cite this as: BMJ 2017;356:j1164

SPOT DIAGNOSIS

An easily mistaken pulmonary opacity

A 54 year old male smoker of 20 pack years presented with a six week history of fever, anorexia, worsening cough, and dyspnoea. He had previously undergone coronary artery bypass grafting. A chest radiograph showed previous sternotomy, borderline cardiomegaly, pulmonary oedema, right lower zone consolidation, and a right mid zone oval density (figure). What is the diagnosis for this oval density?

Submitted by Timothy Shao Em Tan and Omar Abdulla
Patient consent obtained.
Cite this as: BMJ 2017;356:j1188
Branch retinal vein occlusion secondary to sildenafil

A 73 year old man presented at the eye unit with a cotton wool spot in his right macula (figure). Ten days later he developed a superficial retinal haemorrhage and was diagnosed with a right branch retinal vein occlusion. His Snellen visual acuity was 6/15. He had no history of diabetes mellitus or hypertension, and coagulation screening was normal. No specific cause was found, but further questioning revealed regular use of sildenafil for erectile dysfunction. A known side effect of sildenafil is retinal vascular occlusion. This case highlights the importance of taking a thorough medical and drug history when faced with a vascular ocular lesion without an obvious cause.

Hussein Almuhtaseb, Osama Kanavati, Andrew Lotery (a.j.lotery@soton.ac.uk), Southampton Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK
Patient consent obtained.
Cite this as: BMJ 2017;356:j753

Vertical transmission of chlamydia

Routine testing for Chlamydia trachomatis in pregnant women in Finland, using urine nucleic acid amplification tests, shows a carriage rate of 2.7%. Textbooks and guidelines claim that half of the babies born to infected women will acquire the infection, and of these, 25% to 50% will be symptomatic. But a study (Sex Transm Infect doi:10.1136/sextrans-2016-052884) shows that the true rate of chlamydial disease in babies is much lower. Using other whole population registries from Finland, possible vertically transmitted chlamydia in infants was estimated at 2.2% per 1000 live births.

Good acute care pays in stroke

The quality of acute care for Australians who suffer stroke was assessed over the years 2010 to 2014 using the Australian Stroke Clinical Registry (Stroke doi:10.1161/STROKEAHA.116.015714). The three key components were: admission to an acute stroke unit, effective antihypertensive medication at discharge, and provision of a discharge care plan. Patients who received these aspects of care showed better survival to 180 days and better health related quality of life.

Bariatric surgery reduces heart failure

Two Swedish registers allow large scale indirect comparisons between the effects of intensive lifestyle modification and bariatric surgery. The 25 804 gastric bypass surgery patients had on average lost 18.8 kg more weight after one year, and 22.6 kg more after two years, than the 13 701 lifestyle modification patients (Circulation doi:10.1161/ CIRCULATIONAHA.116.025629). During a median of 4.1 years, the incidence of heart failure in the surgery patients was half that of the lifestyle group, translating into a five year risk of 0.2% versus 0.4%.

BCG: not magic for preventing other things

Bacillus Calmette-Guérin is an example of a live vaccine that, according to observational evidence from low income settings, might protect children from more than just its target disease, tuberculosis. The Danish Calmette Trial randomised 4262 children to receive BCG or no intervention at seven days of age, to test this hypothesis in a high income setting (Arch Dis Child doi: 10.1136/ archdischild-2016-310760). Over a period of 15 months, there was no difference in rates of hospitalisation between the groups.

Overdiagnosis victims speak

Many people who have had dubious diagnoses and then unnecessary treatment show high levels of gratitude. Conversely, those who decide against intervention often suffer for it, according to a qualitative study of 22 people who were among the first to question the practice of immediate intervention for their small, incidentally identified thyroid cancers (JAMA Otolaryngol Head Neck Surg doi:10.1001/ jamaoto.2016.4749). Participants reported receiving non-reassuring, unsupportive responses to their decision not to intervene. They experienced anxiety about disease progression, felt isolated, and most kept their diagnosis a secret because of their experiences.

Distress, observed or felt

Coping with pregnancy termination for fetal abnormality can have profound effects on mothers and those looking after them. A study within three English hospitals interviewed both the staff and the mothers (BMJ Pregnancy Childbirth doi: 10.1186/s12884-017-1238-3) and found good agreement in identifying key coping mechanisms. These included support from others, acceptance, problem solving, avoidance, another pregnancy, and meaning attribution. Health professionals showed high levels of insight and empathy in the short term, but there were no systems in place for longer term support.

Vesalius for your next birthday

De humani corporis fabrica by Andreas Vesalius is no doubt “the most iconic medical book of all time,” to use current jargon. Sir William Osler was just one medical luminary who spent years striving to obtain a copy, which he later gave to the Bodleian Library in Oxford. In fact, the magnificent folio editions of 1543 and 1555 are not as rare as once thought, according to a survey (Soc Hist Med doi:10.1093/shm/hkw108). There are 146 publicly held copies in the USA, followed by 97 in the UK, which beats Italy with its 63. The last 1543 edition to come on sale in the UK fetched a mere £60 000, far less than the big car with a personal number plate coveted by so many wealthy doctors.

Cite this as: BMJ 2017;356:j1344