PRACTICE

PRACTICE POINTER

Primary Sjögren syndrome

Manuel Ramos-Casals,1 Pilar Brito-Zerón,1 Antoni Sisó-Almirall,2 Xavier Bosch3

Sjögren syndrome is a systemic autoimmune disease causing secretory gland dysfunction. This leads to dryness of the main mucosal surfaces such as the mouth, eyes, nose, pharynx, larynx, and vagina.1 Sjögren syndrome may be a serious disease, with excess mortality caused by haematological cancer.2 The cause of Sjögren syndrome is unknown, but factors postulated to play a role are both genetic and environmental.1 The disease overwhelmingly affects middle aged women but may also affect children, men, and elderly people. When sicca symptoms appear in a previously healthy person, the syndrome is classified as primary Sjögren syndrome. Sjögren syndrome associated with another underlying systemic autoimmune disorder, such as systemic lupus erythematosus, rheumatoid arthritis, or scleroderma, is known as secondary or, increasingly, associated Sjögren syndrome.

Sicca symptoms (dry mouth and eyes) are among the most common oral and ocular complaints seen by general practitioners, but even so the disease is often under-diagnosed or misdiagnosed.3–6 Although incidence data in primary care are scarce, preliminary reports suggest it may be around two per 1000 patients per year,7 with an overall prevalence in Europe of nearly 0.1%.1,6,7 Patients with Sjögren syndrome require a health spend double that of the mean for primary care patients and similar to that of patients with rheumatoid arthritis.8–9

What are the presenting symptoms and signs?

There are three predominant clinical presentations, which may occur at onset or later and often overlap.

Sicca syndrome

Xerostomia (subjective feeling of mouth dryness) and xerophthalmia (subjective feeling of eye dryness) are the key symptoms in the diagnosis of Sjögren syndrome, occurring in more than 95% of patients; a positive answer to at least one of the three questions about ocular or oral symptoms included in the current classification criteria (box 1) has a positive value of 54–77%, and a negative answer has a negative predictive value of 94–98%.10,11 Other oral symptoms include soreness, adherence of food to the mucosa, and dysphagia. Reduced salivary volume interferes with speaking or eating and may facilitate local infection, tooth decay, and periodontal disease. Oral signs include a lobulated or depapillated red tongue and angular cheilitis (fig 1). Xerophthalmia encompasses itching and grittiness, and may be associated with soreness, photosensitivity, ocular fatigue, and reduced visual acuity. Diminished tear secretion may lead to chronic irritation and destruction of conjunctival epithelia (keratoconjunctivitis sicca), with greater susceptibility to ocular infections. Additional sicca symptoms that often coexist with dry eyes and mouth include hoarseness, non-productive cough, skin dryness and, in women, dyspareunia. Nearly 30% of patients may present with inflammatory, episodic swelling of the major salivary glands (parotid and submandibular glands).12

General symptoms

Abnormal fatigue may be a reason for consultation; it is reported by about 70–80% of patients with Sjögren syndrome and is often related to work disability.13,14 Other non-specific symptoms closely associated with fatigue are sleep disturbances, anxiety, and depression, with a prevalence of nearly 15%, 20%, and 40% of patients with primary Sjögren syndrome, respectively.14–16 Chronic pain is often associated with polyarthralgia and myalgia, which are reported by more than 50% of patients.1 Careful assessment is essential, as this set of symptoms is also characteristic of other conditions (including menopause, hypothyroidism, neoplasia, primary depression, and, above all, fibromyalgia). Some patients, especially children and young adults, may present with low grade, self limiting fever.

Organ specific involvement

Patients may develop several systemic manifestations, either at presentation or later (box 2).

METHODS

We searched Medline for English language articles published between 1 January 1986 and 31 August 2011 for studies in adult humans using the MeSH term “Sjögren’s syndrome.” Duplicate publications, case reports, experimental studies, and uncontrolled series with fewer than 10 patients were excluded. We also manually searched the reference list of relevant articles retrieved. Study designs were considered in the following order (listed from highest to lowest evidence quality): controlled trials, prospective cohort studies, case-control studies, retrospective studies, and case series.

1 Sjögren Syndrome Research Group (AGAUR), Department of Systemic Autoimmune Diseases, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), ICMD, Hospital Clinic, Villarroel, 170, 08036-Barcelona, Spain
2 Primary Care Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Primary Care Centre Les Corts, CAPSE, Barcelona
3 Department of Internal Medicine, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), ICMID, Hospital Clinic, University of Barcelona, Barcelona

Correspondence to: M Ramos-Casals mramos@clinic.ub.es

Cite this as: BMJ 2012;345:e3821 doi: 10.1136/bmj.e3821

bmj.com

Previous articles in this series

- Necrotising fasciitis (BMJ) 2012;345:e4274
- Perioperative fluid therapy (BMJ) 2012;344:e2865
- Healthier ageing (BMJ) 2012;344:e1214
- Skin camouflage (BMJ) 2012;344:d7921
- Diagnosing and investigating adverse reactions in metal on metal hip implants (BMJ) 2011;343:d7441
How can the disease be diagnosed?

Early diagnosis may alleviate symptoms and ensure timely treatment of symptoms and complications. Definitive diagnosis of Sjögren syndrome requires the fulfilment of four or more of the current classification criteria (box 1). Fulfilment of at least four of these criteria (which must include the histopathological or antibody criteria) has a sensitivity of 93.5% and a specificity of 94%.

Primary care investigation

Clinical—The diagnostic approach for GPs starts by discarding other causes of dry eyes (allergic conjunctivitis, blepharitis, rosacea) and dry mouth, including diabetes, chronic viral infections, dehydration, irradiation of salivary glands, and, especially, drugs (box 3). The study of impaired saliva and lacrimal secretions is not routinely available in primary care. However, two tests—unstimulated saliva flow measurement, and Schirmer’s test—have simple technical requirements readily available in GP practice (graduated tube and a small strip of filter paper, respectively), but they require time and practice to be feasible for GPs. For salivary flow measurement, the patient is instructed to spit saliva into a graduated test tube every minute; a quantity of <1.5 mL collected over a 15 minute period indicates impaired saliva secretion. Schirmer’s test consists of a strip of filter paper placed in the lower conjunctival corneal sac; lacrimal wetting of <5 mm of the paper after 5 minutes shows abnormality. Clinical suspicion of

Box 1 | 2002 American-European classification criteria for Sjögren syndrome

1. Ocular symptoms—A positive response to at least one of the following questions:
 a) Have you had daily, persistent, troublesome dry eyes for more than 3 months?
 b) Do you have a recurrent sensation of sand or gravel in the eyes?
 c) Do you use tear substitutes more than three times a day?

2. Oral symptoms—A positive response to at least one of the following questions:
 a) Have you had a daily feeling of dry mouth for more than 3 months?
 b) Have you had recurrently or persistently swollen salivary glands as an adult?
 c) Do you frequently drink liquids to aid in swallowing dry food?

3. Ocular signs—Objective evidence of ocular involvement defined as a positive result for at least one of the following tests:
 a) Schirmer’s test for tear function, performed without anaesthesia (positive result ≤5 mm in 5 minutes)
 b) Rose Bengal score or other ocular dye score (positive result score ≥4 on the van Bijsterveld scoring system)

4. Histopathology—In minor salivary glands (obtained through normal appearing mucosa) focal lymphocytic sialoadenitis, evaluated by an expert histopathologist, with a focus score of 1 (defined as the number of lymphocytic foci (which are adjacent to normal appearing mucous acini and contain >50 lymphocytes) per 4 mm² of glandular tissue)

5. Salivary gland involvement—Objective evidence of salivary gland involvement defined by a positive result for at least one of the following tests:
 a) Unstimulated whole salivary flow (<1.5 mL in 15 minutes)
 b) Parotid sialography showing presence of diffuse sialectasias (punctate, cavitary, or destructive pattern) without evidence of obstruction in the major ducts
 c) Salivary scintigraphy showing delayed uptake, reduced concentration, or delayed excretion of tracer

6. Autoantibodies to Ro/SS-A or La/SS-B antigens, or both

Presence of primary Sjögren syndrome

Patients are classified as having primary Sjögren syndrome when they fulfil ≥4 of the 6 criteria; either criterion 4 (salivary gland pathology) or 6 (autoantibodies) is mandatory

Exclusion criteria—Past head and neck radiation

How can the disease be diagnosed?

Early diagnosis may alleviate symptoms and ensure timely treatment of symptoms and complications. Definitive diagnosis of Sjögren syndrome requires the fulfilment of four or more of the current classification criteria (box 1). Fulfilment of at least four of these criteria (which must include the histopathological or antibody criteria) has a sensitivity of 93.5% and a specificity of 94%.

Primary care investigation

Clinical—The diagnostic approach for GPs starts by discarding other causes of dry eyes (allergic conjunctivitis, blepharitis, rosacea) and dry mouth, including diabetes, chronic viral infections, dehydration, irradiation of salivary glands, and, especially, drugs (box 3). The study of impaired saliva and lacrimal secretions is not routinely available in primary care. However, two tests—unstimulated saliva flow measurement, and Schirmer’s test—have simple technical requirements readily available in a GP surgery (graduated tube and a small strip of filter paper, respectively), but they require time and practice to be feasible for GPs. For salivary flow measurement, the patient is instructed to spit saliva into a graduated test tube every minute; a quantity of <1.5 mL collected over a 15 minute period indicates impaired saliva secretion. Schirmer’s test consists of a strip of filter paper placed in the lower conjunctival corneal sac; lacrimal wetting of <5 mm of the paper after 5 minutes shows abnormality. Clinical suspicion of
Sjögren syndrome should increase when systemic manifestations (box 2) accompany the sicca complaints.

Investigations—Routine blood tests have a role: 25% of patients with Sjögren syndrome have an erythrocyte sedimentation rate >50 mm in the first hour, while 30% have cytopenias (normocytic anaemia, lymphopenia, neutropenia, or thrombocytopenia). These tests are not sufficiently accurate to make the diagnosis, but they may help point to a systemic cause of sicca features. Other tests available in primary care that will suggest an autoimmune origin of the sicca syndrome include hypergammaglobulinaemia, rheumatoid factor, and antinuclear antibodies, which have a low sensitivity (60–69%) but higher specificity and positive predictive values (>90%). These immunological tests may be central in differentiating Sjögren syndrome from non-autoimmune causes of sicca syndrome.

Specialised investigation

To confirm the diagnosis, refer suspected cases of Sjögren syndrome to an ophthalmologist and to a specialist in autoimmune diseases for a specific diagnostic investigation, since the most common symptoms (sicca and general symptoms) are non-specific and extremely common in middle-aged women.

Ocular and oral involvement should be measured objectively. Complete ophthalmological assessment should include Schirmer’s test and corneal staining with colorants (rose Bengal, fluorescein) (fig 3) for slit lamp examination to detect conjunctival epithelium destroyed by desiccation. Oral involvement may be evaluated either by the measurement of salivary flow or by parotid scintigraphy. Salivary flow measurement has a sensitivity of 56% and a specificity of 81% for Sjögren syndrome. Parotid scintigraphy has greater sensitivity (80%) and specificity (86%) and evaluates the grade of involvement of the major salivary glands; severe involvement (grade IV) at diagnosis is prospectively associated with an increased risk of lymphoma and death.

Immunological study must include determination of autoantibodies to Ro/SS-A and La/SS-B antigens, which are positive in 50–70% of patients and are the only immunological parameter included in the current criteria, with a low sensitivity (33–46%) but specificity of 100%. Other parameters that should be tested for, or ruled out, are complement levels, serum monoclonal band, and cryoglobulins (hypocomplementaemia, monoclonal gammopathy, and mixed cryoglobulinaemia are associated with increased risk of lymphoma and death). Finally, minor salivary gland biopsy, although invasive, is highly specific for the diagnosis of Sjögren syndrome, with a sensitivity of 82% and a specificity of 86%, and is indicated principally in patients with negative anti-Ro/La antibodies; focal lymphocytic sialadenitis (aggregates of >50 lymphocytes) is the characteristic histopathological feature.

When to refer to a specialist

All suspected cases of Sjögren syndrome should be referred to specialist care to confirm the diagnosis. However, specific symptoms suggesting systemic involvement (box 2) may require referral to the appropriate specialist. Be aware of some symptoms or analytical abnormalities that may signal possible systemic complications: these include dyspnoea (interstitial lung disease), paraesthesia or ataxia (peripheral neuropathy), focal neurological symptoms (multiple sclerosis-like lesions, fig 4), recurrent renal colic or raised serum creatinine (interstitial nephritis or glomerulonephritis), and raised alkaline phosphatase or bilirubin (primary biliary cirrhosis). Refer patients with persistent high fever or...
PATIENT’S STORY
When I was 27, blood tests showed I had an inflamed liver and I was diagnosed with autoimmune hepatitis. Two years later, I started having sicca symptoms, which led to more tests and a final diagnosis of Sjögren syndrome after five more years of visiting a number of specialists. In fact, the first symptoms occurred when I was a teenager, but my doctors didn’t know what was wrong. I was very scared and I had many questions and wondered about my future.

It was difficult at first living with this. Sicca symptoms are present every day, with severe periods that may be related to stress or which can be completely unexpected. Various external factors—such as air conditioning; working with computers, smart phones, or tablets; bright or windy weather—repeatedly worsen the symptoms of dry eye, dry mouth, and dry throat, factors—such as air conditioning; working with computers, smart phones, or tablets; bright or windy weather—repeatedly worsen the symptoms of dry eye, dry mouth, and dry throat, which have a big effect on my daily activities, making it difficult to work overtime or even enjoy dinner with my family and friends. Most people don’t know about the disease and its consequences, and colleagues, friends, and relatives don’t understand why I’m not OK, especially when I seem healthy at first sight.

Now, 12 years later, I take it day by day and derive pleasure from the things I enjoy and can do. I follow a diet and exercise plan, and manage the bad days better than I would have been able to without the knowledge I now have. I think about other people with Sjögren syndrome, because I don’t want them to go through the same medical journey of waiting, confusion, and fear—so, in 2006, I cofounded the Catalan Association of Patients with Sjögren Syndrome.

What are the complications?
Untreated dry mouth can result in dental loss, oral candidiasis, and periodontal disease, while untreated severe dry eye may result in corneal ulcers and further perforation. Undiagnosed involvement of other organs may delay appropriate therapy, resulting, in some cases, in end stage organ failure (renal failure, pulmonary fibrosis, progressive neurological disease) and death. Objective standardised evaluation of the disease burden has been facilitated by two recently proposed international indexes.22 23 Haematological neoplasia is the main complication of Sjögren syndrome, with patients with Sjögren syndrome having a 10–50 times higher risk of lymphoma than healthy individuals, and the largest case series found that 2–9% of patients with primary Sjögren syndrome develop lymphoma.18 19 24

Prospective studies have identified parotid enlargement, purpura, cryoglobulins, monoclonal band, and hypocomplementaemia as clinical and immunological risk factors.

How should patients with Sjögren syndrome be treated?
Alcohol and smoking should be avoided, and thorough oral hygiene is essential. Environmental irritants such as smoke, wind, air conditioning, and low humidity may exacerbate ocular symptoms. Treatment of dry eyes should start with preservative-free teardrops and ocular lubricating ointments. The addition of ocular 0.05% cyclosporin in patients with refractory severe disease is supported by controlled trials.25 For dry mouth, mechanical or gustatory stimulation (sugar-free chewing gum or citric juices) and moisture replacement may be tried first. Controlled trials support the use of oral mucinacids agonists (pilocarpine and cevimeline) for patients with residual salivary gland function.25

Systemic therapy should be tailored to the organ affected and the severity.25 However, the limited evidence available for the drugs most often used with Sjögren syndrome makes firm recommendations difficult. Non-steroidal anti-inflammatory drugs usually provide relief from minor musculoskeletal symptoms; if these symptoms become chronic, add hydroxychloroquine, which has been shown to improve fatigue, arthralgias, and myalgias in uncontrolled observational studies.25 According to evidence from some small retrospective studies and isolated case reports, glucocorticoids or immunosuppressive agents should not be used in these patients, but only in patients with potentially severe systemic involvement.25 Evidence from controlled trials suggests tumour necrosis factor blockers are not efficacious and that B cell targeted agents (rituximab and belimumab) may be more promising therapies.26

How to follow up and monitor
Patients with stable disease limited to mucosal surfaces may require only annual evaluation by their GP or specialist, while those with extraluminal manifestations should be evaluated every six months and those with end organ damage every three months by the specialist in autoimmune diseases.1 Patients should be routinely asked about cutaneous lesions, night sweats, and weight loss. Routine physical examination should include evaluation of the mouth and eyes to exclude local complications and examination for peripheral lymphadenopathy and enlargement of parotid and submandibular glands, the liver, and the spleen. Yearly laboratory tests should include full blood count, erythrocyte sedimentation rate, and renal and liver function tests as part of the basic investigation for complications. Immunological tests are not necessary in routine follow-up with two exceptions—patients with markers associated with a poor prognosis (low complement levels, mixed cryoglobulinaemia, monoclonal gammapathy), and when there is clinical suspicion of a concomitant systemic autoimmune disease (development of severe Raynaud’s disease or cutaneous sclerosis suggesting systemic sclerosis, or erosive arthritis suggesting rheumatoid arthritis).27 Advise fertile women with anti-Ro/ La antibodies about the risk of fetal congenital heart block, which has a frequency of <5% and may cause fetal death or the need for a pacemaker in the newborn.

Contributors: MRC and PBZ contributed equally to the preparation of this article, and both are guarantors of it. ASA and XB contributed to the sections on diagnosis, referral, and follow-up. All authors critically revised the manuscript for intellectual content, contributed to its analysis and interpretation, and gave their final approval.

All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and declare: no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; the work reflects part of research on Sjögren syndrome financed via state funds (Fondo de Investigaciones Sanitarias 08/0103) and a charitable grant (La Manaté de TV3 07/1810), but these funders should not have any competing interest in the work.

Provenance and peer review: Not commissioned, externally peer reviewed. Patient consent obtained.

10-MINUTE CONSULTATION

Blepharitis

Andrew M J Turnbull,1 Martin P Mayfield2

A 57 year old man presents with persistently sore, irritated eyes and describes a burning, gritty sensation and intermittently blurred vision. His eyes occasionally water but there is no discharge. He has used over the counter chloramphenicol drops and was prescribed a course of fusidic acid drops, each time with only temporary benefit. He is fed up with the discomfort. On examination, his eyelids appear red with scaly crusts around the eyelashes. There is mild, diffuse conjunctival injection, and yellowish “plugs” (swellings) are present along the posterior margin of the eyelid. Pupil reactions and eye movements are normal, and there is no evidence of visual disturbance.

Blepharitis means inflammation of the eyelids. Anterior blepharitis affects the outer margins of the eyelids (where the eyelashes emerge); posterior blepharitis affects the inner margins (which touch the eye). Anterior blepharitis is generally of staphylococcal or seborrhoeic origin, and posterior blepharitis results from meibomian gland dysfunction. Mixed blepharitis (combining anterior and posterior components) is common and was the diagnosis in this patient.

Staphylococcal blepharitis is caused by bacterial colonisation and is more common in younger adults and in children. Seborrhoeic blepharitis generally affects older adults and the seborrhea often involves the scalp, nasolabial folds, and chest. The meibomian glands are responsible for secreting lipids into the tear film. Meibomian gland dysfunction results in narrowed glands and thickened secretions. This leads to lumps on the eyelid (meibomian cysts; chalazia) and reduces the tear film quality, causing dry eyes and irritation.

The differential diagnosis includes conjunctivitis, presep-tal cellulitis, corneal disease, and dry eyes from non-blepharitis causes (such as keratoconjunctivitis sicca, Sjögren’s syndrome, or other lacrimal gland disease). Chronic, unilateral, or asymmetric inflammation of the eyelids may indicate malignancy such as sebaceous gland carcinoma or squamous or basal cell carcinoma.

What you should cover

History

Ask about the nature and duration of symptoms. As well as the symptoms mentioned in the case study, patients may also complain of itching, light aversion, and eyelid lumps. Does it affect one side or both? Are symptoms worse in the morning (suggesting blepharitis) or later on (suggestive of dry eyes)? Do they ever wake with the eyelids stuck together? Ask about contact lens use, which may be implicated in meibomian gland dysfunction. Advise contact lens wearers that blepharitis increases the risk of bacterial keratitis.
Examination
Patients often complain of pronounced symptoms, yet examination findings may be subtle and not seem to reflect the symptoms they report. However, any findings should be bilateral and fairly symmetric. Patients may have scaly or crusty erythematous eyelids, with dilated superficial blood vessels. Yellowish “plugs” (blocked meibomian glands), foam on the lid margins, and conjunctival injection may be present. Look for chalazia, loss of eyelashes (madarosis), misdirected eyelashes (trichiasis), and evidence of other dermatological disease. Although examination findings can often be seen easily, occasionally they may only be visible with more formal slit lamp examination. Community optometrists, therefore, have a valuable role in diagnosing blepharitis and excluding other conditions.

What you should do
Advise patients that blepharitis is a chronic condition and treatment is aimed at symptom control rather than cure. Patient information leaflets (such as at www.patient.co.uk/health/Blepharitis.htm) can help to explain this and encourage treatment compliance. The stay of management for all types of blepharitis is eyelid hygiene (box).

In resistant cases, more specific treatments may be appropriate. A topical broad spectrum antibiotic (such as chloramphenicol, fusidic acid) applied to the eyelid margins can be useful in staphylococcal blepharitis. Meibomian gland dysfunction can be treated with warm compresses followed by eyelid massage and expression of the liquefied secretions. Unless contraindicated, systemic tetracyclines are an option for chronic meibomian gland dysfunction—for example, oral doxycycline 100 mg once daily for six weeks.

Management of other conditions associated with blepharitis is needed. Treat dry eyes with lubricating drops and ointments. Chalazia may respond to warm compresses and topical antibiotics, but ophthalmic referral for incision and curettage may be necessary in persistent or troublesome cases. Consider referral to an ophthalmologist if you suspect corneal disease or visual deterioration, or if there is diagnostic uncertainty.

Contributors: Both authors contributed equally in the initial concept and writing of this article. AMJT is the guarantor.

Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and declare: no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work; no other relationships or activities that could appear to have influenced the submitted work.

Provenance and peer review: Not commissioned; externally peer reviewed.

Accepted: 22 February 2012

ANSWERS TO ENDGAMES, p 42

For long answers go to the Education channel on bmj.com

PRACTICE

CASE REPORT
A 46 year old man with carcinoma of unknown primary site
1 Detailed histological examination of the tumour biopsy should be requested and the patient's fitness for chemotherapy assessed. Most importantly, definitive treatment should not be excessively delayed in the search for a primary tumour.
2 Modern immunohistochemical methods, such as the expression pattern of cytokeratins 7 and 20, will often point to a primary site.
3 Tumour histology, performance status, hepatic involvement, the number and distribution of metastatic organ sites, sex, weight loss, and lactate dehydrogenase.

STATISTICAL QUESTION
Absolute and relative risks
Statements a, b, and c are all true.

GUIDE FOR PATIENTS ON EYELID HYGIENE
• Use warm, moist compresses on closed eyelids to clear superficial debris and soften secretions; do this for 5-10 minutes, at least once daily
• Then clean the eyelid margins carefully and thoroughly; do this using a cotton bud soaked in dilute baby shampoo or sodium bicarbonate, or use a commercial eyelid hygiene kit
• Incorporate eyelid hygiene into your daily routine, and continue long term to avoid relapse

PICTURE QUIZ Shoulder injury
1 The shoulder radiographs show a valgus impacted fracture of the left proximal humerus. It is multifragmentary, affecting the surgical neck, lesser tuberosity, and greater tuberosity.
2 A modified axillary (Velpeau) view can be obtained in patients who are unable to abduct their arm because of pain. Computed tomography with three dimensional reconstruction is increasingly available; it can provide a better understanding of the fracture pattern if this is unclear with plain radiographs and can be used to plan operative procedures.
3 Neurovascular injuries often occur in proximal humeral fractures. Structures at risk are the axillary nerve, the brachial plexus, and the axillary artery, in that order of frequency. Nerve injuries are usually caused by traction, which produces neurapraxia and has a good prognosis. More rarely, a nerve is lacerated (neurotmesis), and this carries a poor prognosis.
4 Management options are non-operative (sling, analgesia, and a graded rehabilitation programme) or operative (open reduction and internal fixation, or (hemi)arthroplasty). Most proximal humeral fractures are not seriously displaced and can be managed non-operatively, particularly in elderly patients. Operative management should be considered in this case because the patient is physiologically young and active with a complex injury pattern. Operative management carries a small risk of infection and nerve injury, but non-operative management may result in malunion and greater joint stiffness.