Skip to main content
Log in

Optimisation of the Management of Patients with Coronary Heart Disease and Type 2 Diabetes Mellitus

Drugs & Aging Aims and scope Submit manuscript

Abstract

Type 2 diabetes mellitus is a prevalent disease in Westernised society, and more than 50% of individuals with diabetes mellitus die from cardiovascular causes. The underlying metabolic defect of type 2 diabetes mellitus is a combination of insulin resistance and decreased secretion of insulin by pancreatic β-cells. Insulin resistance commonly precedes the onset of type 2 diabetes mellitus and is usually associated with a metabolic syndrome including hypertension, dyslipidaemia and obesity. Treatment of known cardiovascular risk factors, including hyperglycaemia, dyslipidaemia, hypertension and smoking, plays a key role in delaying the onset and progression of coronary heart disease (CHD) and other forms of atherosclerosis in patients with diabetes mellitus.

Sulphonylureas should be used with caution in patients with CHD but aspirin (acetylsalicylic acid), β-blockers and ACE inhibitors play an important role in the medical management of patients with established coronary artery disease and diabetes mellitus.

Patients with diabetes mellitus represent a higher risk group of patients after both percutaneous and surgical coronary revascularisation and the decision regarding the choice of revascularisation procedure should take into account angiographic characteristics, clinical status and patient preference.

Patients presenting with diabetes mellitus and acute myocardial infarction should be considered for reperfusion therapy with either urgent thrombolytic therapy or primary percutaneous coronary intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I

References

  1. Klein R. Hyperglycemia and microvascular and macrovascular disease in diabetes. Diabetes Care 1995; 18(2): 258–68

    Article  PubMed  CAS  Google Scholar 

  2. Klein R, Klein BE, Moss SE. Relation of glycemic control to diabetic microvascular complications in diabetes mellitus. Ann Intern Med 1996; 124 (1 Pt 2): 90–6

    PubMed  CAS  Google Scholar 

  3. Anonymous. Intensive blood-glucose control with $$sulphonyl-ureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group.Lancet 1998; 352(9131): 837–53

    Google Scholar 

  4. Abraira C, Colwell JA, Nuttall FQ, et al. Veterans Affairs Cooperative Study on glycemic control and complications in type II diabetes (VA CSDM): results of the feasibility trial. Veterans Affairs Cooperative Study in Type II Diabetes. Diabetes Care 1995; 18(8): 1113–23

    Article  PubMed  CAS  Google Scholar 

  5. Anonymous. The University Group Diabetes Program. A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. V. Evaluation of pheniformin therapy. Diabetes 1975; 24Suppl. 1: 65–184

    Google Scholar 

  6. Malmberg K. Prospective randomised study of intensive insulin treatment on long term survival after acute myocardial infarction in patients with diabetes mellitus. DIGAMI (Diabetes Mellitus, Insulin Glucose Infusion in Acute Myocardial Infarction) Study Group. BMJ 1997; 314(7093): 1512–5

    Article  PubMed  CAS  Google Scholar 

  7. Helmrich SP, Ragland DR, Leung RW, et al. Physical activity and reduced occurrence of non-insulin-dependent diabetes mellitus. N Engl J Med 1991; 325(3): 147–52

    Article  PubMed  CAS  Google Scholar 

  8. Holman RR, Cull CA, Turner RC, et al. A randomized doubleblind trial of acarbose in type 2 diabetes shows improved glycemic control over 3 years (U.K. Prospective Diabetes Study 44). Diabetes Care 1999; 22: 960–4

    Article  PubMed  CAS  Google Scholar 

  9. Brady PA, Alekseev AE, Aleksandrova LA, et al. A disrupter of actin microfilaments impairs sulfonylurea-inhibitory gating of cardiac KATP channels. Am J Physiol 1996; 271 (6 Pt 2): H2710–6

    PubMed  CAS  Google Scholar 

  10. Brady PA, Terzic A. The sulfonylurea controversy: more questions from the heart. J Am Coll Cardiol 1998; 31(5): 950–6

    Article  PubMed  CAS  Google Scholar 

  11. Edwards G, Weston AH. The pharmacology of ATP-sensitive potassium channels. Annu Rev Pharmacol Toxicol 1993; 33: 597–637

    Article  PubMed  CAS  Google Scholar 

  12. Ashcroft SJ, Ashcroft FM. The sulfonylurea receptor. Biochimica Biophysica Acta 1992; 1175(1): 45–59

    Article  CAS  Google Scholar 

  13. Terzic A, Jahangir A, Kurachi Y. Cardiac ATP-sensitive K+ channels: regulation by intracellular nucleotides and K+ channel-opening drugs. Am J Physiol 1995; 269 (3 Pt 1): C525–45

    PubMed  CAS  Google Scholar 

  14. Findlay I. Effects of pH upon the inhibition by sulphonylurea drugs of ATP-sensitive K+channels in cardiac muscle. J Pharmacol Exp Ther 1992; 262(1): 71–9

    PubMed  CAS  Google Scholar 

  15. Tomai F, Crea F, Gaspardone A, et al. Ischemic preconditioning during coronary angioplasty is prevented by glibenclamide, a selective ATP-sensitive K+ channel blocker. Circulation 1994; 90(2): 700–5

    Article  PubMed  CAS  Google Scholar 

  16. Garratt KN, Brady PA, Hassinger NL, et al. Sulfonylurea drugs increase early mortality in patients with diabetes mellitus after direct angioplasty for acute myocardial infarction. J Am Coll Cardiol 1999; 33(1): 119–24

    Article  PubMed  CAS  Google Scholar 

  17. Anonymous. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group [published erratum appears in Lancet 1998 Nov 7; 352 (9139): 1557]. Lancet 1998; 352(9131): 854–65

    Google Scholar 

  18. Fonseca VA, Valiquett TR, Huang SM, et al. Troglitazone monotherapy improves glycemic control in patients with type 2 diabetes mellitus: a randomized, controlled study. The Troglitazone Study Group. J Clin Endocrinol Metab 1998; 83(9): 3169–76

    Article  PubMed  CAS  Google Scholar 

  19. Neuschwander-Tetri BA, Isley WL, Oki JC, et al. Troglitazone-induced hepatic failure leading to liver transplantation: a case report Ann Intern Med 1998; 129: 38–41

    PubMed  CAS  Google Scholar 

  20. Marbury TC, Ruckle JL, Hatorp V, et al. Clin Pharmacol Ther 2000; 67: 7–15

    Article  PubMed  CAS  Google Scholar 

  21. Lichtenstein MJ, Yarnell JW, Elwood PC, et al. Sex hormones, insulin, lipids, and prevalent ischemic heart disease. Am J Epidemiol 1987; 126(4): 647–57

    PubMed  CAS  Google Scholar 

  22. Logan RL, Riemersma RA, Thomson M, et al. et al. Risk factors for ischaemic heart-disease in normal men aged 40. Edinburgh-Stockholm Study. Lancet 1978; 1(8071): 949–54

    Article  PubMed  CAS  Google Scholar 

  23. Fontbonne A, Tchobroutsky G, Eschwege E, et al. Coronary heart disease mortality risk: plasma insulin level is a more sensitive marker than hypertension or abnormal glucose tolerance in overweight males. The Paris Prospective Study. Int J Obesity 1988; 12(6): 557–65

    CAS  Google Scholar 

  24. Stout RW, Bierman EL, Ross R. Effect of insulin on the proliferation of cultured primate arterial smooth muscle cells. Circulation Res 1975; 36(2): 319–27

    Article  PubMed  CAS  Google Scholar 

  25. Motani A, Forster L, Tull S, et al. Insulin-like growth factor-I modulates monocyte adhesion to EAhy 926 endothelial cells. Int J Exp Pathol 1996; 77(1): 31–5

    Article  PubMed  CAS  Google Scholar 

  26. Boyne MS, Saudek CD. Effect of insulin therapy on macro-vascular risk factors in type 2 diabetes. Diabetes Care 1999; 22Suppl. 3: C45–53

    PubMed  Google Scholar 

  27. Gaster B, Hirsch IB. The effects of improved glycemic control on complications in type 2 diabetes. Arch Intern Med 1998; 158(2): 134–40

    Article  PubMed  CAS  Google Scholar 

  28. Haffner SM. Diabetes, hyperlipidemia, and coronary artery disease. Am J Cardiol 1999; 83(9B): 30–5F

    Google Scholar 

  29. Pyorala K, Pedersen TR, Kjekshus J, et al. Cholesterol lowering with simvastatin improves prognosis of diabetic patients with coronary heart disease: a subgroup analysis of the Scandinavian Simvastatin Survival Study (4S) [published erratum appears in Diabetes Care 1997 Jun; 20 (6): 1048]. Diabetes Care 1997; 20(4): 614–20

    Article  PubMed  CAS  Google Scholar 

  30. Goldberg RB, Mellies MJ, Sacks FM, et al. Cardiovascular events and their reduction with pravastatin in diabetic and glucose-intolerant myocardial infarction survivors with average cholesterol levels: subgroup analyses in the Cholesterol And Recurrent Events (CARE) trial. The Care Investigators. Circulation 1998; 98(23): 2513–9

    Article  PubMed  CAS  Google Scholar 

  31. Koskinen P, Mänttäri M, Manninen V, et al. Coronary heart disease incidence in NIDDM patients in the Helsinki Heart Study. Diabetes Care 1992; 15: 820–25

    Article  PubMed  CAS  Google Scholar 

  32. Bilo HJ, Gans RO. Hypertensive patients and diabetes: a high-risk population. J Cardiovasc Pharmacol 1998; 32Suppl. 2: S1–8

    PubMed  CAS  Google Scholar 

  33. Anonymous. Tight blood pressure control and risk of macro-vascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group [published erratum appears in BMJ 1999 Jan 2; 318 (7175): 29]. BMJ 1998; 317(7160): 703–13

    Google Scholar 

  34. Carney AJ, Carney TA. Use of aspirin in secondary prevention of coronary heart disease is rising [letter]. BMJ 1996; 312: 846

    Article  PubMed  CAS  Google Scholar 

  35. Yusuf S, Lessen J, Jha P, et al. Primary and secondary prevention of myocardial infarction and strokes: an update of randomly allocated, controlled trials. J Hypertens Suppl 1993; 11: S61–73

    Article  PubMed  CAS  Google Scholar 

  36. Anonymous. Aspirin effects on mortality and morbidity in patients with diabetes mellitus. Early Treatment Diabetic Retinopathy Study report 14. ETDRS Investigators. JAMA 1992; 268(10): 1292–300

    Google Scholar 

  37. Colwell JA. Aspirin therapy in diabetes. Diabetes Care 1997; 20(11): 1767–71

    PubMed  CAS  Google Scholar 

  38. Jonas M, Reicher-Reiss H, Boyko V, et al. Usefulness of beta-blocker therapy in patients with non-insulin-dependent diabetes mellitus and coronary artery disease. Bezafibrate Infarction Prevention (BIP) Study Group. Am J Cardiol 1996; 77(15): 1273–7

    Article  PubMed  CAS  Google Scholar 

  39. Cashin-Hemphill L, Holmvang G, Chan RC, et al. Angiotensin-converting enzyme inhibition as antiatherosclerotic therapy: no answer yet. QUIET Investigators. QUinapril Ischemic Event Trial. Am J Cardiol 1999; 83(1): 43–7

    Article  PubMed  CAS  Google Scholar 

  40. Anonymous. Effects of ramipril on cardiovascular and micro-vascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Heart Outcomes Prevention Evaluation Study Investigators. Lancet 2000; 355(9200): 253–9

    Google Scholar 

  41. Winocour PD. Platelet abnormalities in diabetes mellitus. Diabetes 1992; 41Suppl. 2: 26–31

    PubMed  Google Scholar 

  42. Kip KE, Faxon DP, Detre KM, et al. Coronary angioplasty in diabetic patients. The National Heart, Lung, and Blood Institute Percutaneous Transluminal Coronary Angioplasty Registry. Circulation 1996; 94(8): 1818–25

    Article  PubMed  CAS  Google Scholar 

  43. Serruys PW, de Jaegere P, Kiemeneij F, et al. A comparison of balloon-expandable-stent implantation with balloon angio-plasty in patients with coronary artery disease. Benestent Study Group. N Engl J Med 1994; 331(8): 489–95

    Article  PubMed  CAS  Google Scholar 

  44. Abizaid A, Kornowski R, Mintz GS, et al. The influence of diabetes mellitus on acute and late clinical outcomes following coronary stent implantation. J Am Coll Cardiol 1998; 32(3): 584–9

    Article  PubMed  CAS  Google Scholar 

  45. Van Belle E, Bauters C, Hubert E, et al. Restenosis rates in diabetic patients: a comparison of coronary stenting and balloon angioplasty in native coronary vessels. Circulation 1997; 96(5): 1454–60

    Article  PubMed  Google Scholar 

  46. Anonymous. Comparison of coronary bypass surgery with angioplasty in patients with multivessel disease. The Bypass Angioplasty Revascularization Investigation (BARI) Investigators [published erratum appears in N Engl J Med 1997 Jan 9; 336 (2): 147]. N Engl J Med 1996; 335(4): 217–25

    Google Scholar 

  47. Ferguson JJ. NHLI BARI clinical alert on diabetics treated with angioplasty [news]. Circulation 1995; 92(12): 3371

    Article  PubMed  CAS  Google Scholar 

  48. Detre KM, Guo P, Holubkov R, et al. Coronary revascularization in diabetic patients: a comparison of the randomized and observational components of the Bypass Angioplasty Revas-cularization Investigation (BARI). Circulation 1999; 99(5): 633–40

    Article  PubMed  CAS  Google Scholar 

  49. Weintraub WS, Mauldin PD, Becker E, et al. A comparison of the costs of and quality of life after coronary angioplasty or coronary surgery for multivessel coronary artery disease: results from the Emory Angioplasty Versus Surgery Trial (EAST). Circulation 1995; 92(10): 2831–40

    Article  PubMed  CAS  Google Scholar 

  50. Barsness GW, Peterson ED, Ohman EM, et al. Relationship between diabetes mellitus and long-term survival after coro-nary bypass and angioplasty. Circulation 1997; 96(8): 2551–6

    Article  PubMed  CAS  Google Scholar 

  51. Lincoff AM, Califf RM, Moliterno DJ, et al. Complementary clinical benefits of coronary-artery stenting and blockade of platelet glycoprotein IIb/IIIa receptors. Evaluation of Platelet IIb/IIIa Inhibition in Stenting Investigators. N Engl J Med 1999; 341(5): 319–27

    Article  PubMed  CAS  Google Scholar 

  52. Mak KH, Moliterno DJ, Granger CB, et al. Influence of diabetes mellitus on clinical outcome in the thrombolytic era of acute myocardial infarction. GUSTO-I Investigators. Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries. J Am Coll Cardiol 1997; 30(1): 171–9

    Article  PubMed  CAS  Google Scholar 

  53. Pfeffer MA, Moye LA, Braunwald E, et al. Selection bias in the use of thrombolytic therapy in acute myocardial infarction. The SAVE Investigators. JAMA 1991; 266(4): 528–32

    Article  PubMed  CAS  Google Scholar 

  54. Stone GW, Grines CL, Browne KF, et al. Outcome of different reperfusion strategies in patients with former contraindications to thrombolytic therapy: a comparison of primary angioplasty and tissue plasminogen activator. Primary Angioplasty in Myocardial Infarction (PAMI) Investigators. Catheterization Cardiovasc Diagn 1996; 39(4): 333–9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirk N. Garratt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, S.H., Kennedy, F.P. & Garratt, K.N. Optimisation of the Management of Patients with Coronary Heart Disease and Type 2 Diabetes Mellitus. Drugs & Aging 18, 325–333 (2001). https://doi.org/10.2165/00002512-200118050-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-200118050-00003

Keywords

Navigation