Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of sexually transmitted diseases in HIV transmission

Key Points

  • Sexual transmission is the main route for the spread of HIV. HIV transmission can be divided into two aspects, infectiousness and susceptibility. Sexually transmitted diseases (STDs) are one of the most important ways that the efficiency of HIV transmission is increased.

Factors that increase transmission

  • HIV infectiousness can be affected by levels of HIV in the bloodstream, the levels of HIV in the genital fluids, the stage of disease, the presence of STDs, the infectiousness of the viral variant and other factors.

Factors that increase susceptibility

  • HIV susceptibility can be affected by mucosal integrity, HLA types, co-receptor variations, hormones, the presence of STDs and other factors.

STDs and HIV transmission

  • STDs increase both the likelihood of transmission and the susceptibility to HIV. STDs increase infectiousness through effects on HIV shedding, HIV replication, increases in viral diversity and through co-transmission of HIV with STDs. STDs increase susceptibility by mucosal disruption, immune changes in the genital tract and effects on the genital tract microenvironment.

STDs and community-based studies

  • Some trials have documented that the most important difference between areas of high HIV prevalence and low prevalence is not sexual behaviour but the differences in rates of certain STDs. Large intervention trials have shown mixed results in reducing HIV incidence by reducing STDs; explanations for this include the age of the HIV epidemic and the role of herpes infection

Abstract

More than 42 million people worldwide are now infected with HIV, in spite of sustained prevention activities. Although the spread of HIV has been primarily sexual, epidemiological studies have indicated that the efficiency of the spread of HIV is poor, perhaps as infrequently as 1 in every 1,000 episodes of sexual intercourse. However, sexually transmitted diseases (STDs) that cause ulcers or inflammation greatly increase the efficiency of HIV transmission — by increasing both the infectiousness of, and the susceptibility to HIV infection. STDs might be particularly important in the early stages of a localized HIV epidemic, when people with risky sexual behaviour are most likely to become infected. In China, eastern Europe and Russia, there has been a remarkable increase in the incidence of STDs in recent years, and this is reflected in the rapid increase in the spread of HIV in these areas. Targeted STD detection and treatment should have a central role in HIV prevention in these emerging epidemics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: The HIV co-receptors.
Figure 3: The effects of urethritis on the viral load of HIV in semen.
Figure 4: The effects of Trichomonas vaginalis infection on the viral load of HIV in semen.
Figure 5: Bacterial vaginosis.

Similar content being viewed by others

References

  1. May, R. M. & Anderson, R. M. Transmission dynamics of HIV infection. Nature 326, 137–142 (1987). This seminal work details the mathematical concepts behind the spread of epidemics.

    Article  CAS  PubMed  Google Scholar 

  2. Shattock, R. J. & Moore, J. P. Inhibiting sexual transmission of HIV-1 infection. Nature Rev. Microbiol. 1, 25–34 (2003)|online|.

    Article  CAS  Google Scholar 

  3. Will, G. F. AIDS crushes a continent. Newsweek 135, 64 (2000).

    CAS  PubMed  Google Scholar 

  4. Gisselquist, D., Rothenberg, R., Potterat, J. & Drucker, E. HIV infections in sub-Saharan Africa not explained by sexual or vertical transmission. Int. J. STD AIDS 13, 657–666 (2002).

    Article  PubMed  Google Scholar 

  5. Royce, R. A., Sena, A., Cates, W. & Cohen, M. S. Sexual transmission of HIV. N. Engl. J. Med. 336, 1072–1078 (1997). Reviews the important factors in sexual HIV transmission.

    Article  CAS  PubMed  Google Scholar 

  6. Cohen, M. S. Preventing sexual transmission of HIV — new ideas from sub-Saharan Africa. N. Engl. J. Med. 342, 970–972 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Gray, R. H. et al. Probability of HIV-1 transmission per coital act in monogamous, heterosexual, HIV-1 discordant couples in Rakai, Ugand. Lancet 357, 1149–1153 (2001). Measures the transmission probability for heterosexual HIV transmission.

    Article  CAS  PubMed  Google Scholar 

  8. Auvert, B. et al. Ecological and individual level analysis of risk factors for HIV infection in four urban populations in sub-Saharan Africa with different levels of HIV infection. AIDS 15, S15–S30 (2001).

    Article  PubMed  Google Scholar 

  9. Leroy, V. et al. Maternal plasma viral load, zidovudine and mother-to-child transmission of HIV-1 in Africa: DITRAME ANRS 049a trial. AIDS 15, 517–522 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Thea, D. M. et al. The effect of maternal viral load on the risk of perinatal transmission of HIV-1. AIDS 11, 437–444 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Connor, E. M. et al. Reduction of maternal–infant transmission of human immunodeficiency virus type 1 with zidovudine treatment. N. Engl. J. Med. 331, 1173–1180 (1994). One of the studies that showed that maternal therapy with AZT reduces vertical transmission to the infant.

    Article  CAS  PubMed  Google Scholar 

  12. Quinn, T. C. et al. Viral load and heterosexual transmission of human immunodeficiency virus type 1. N. Engl. J. Med. 342, 921–929 (2000). Details the importance of viral load in sexual HIV transmission.

    CAS  PubMed  Google Scholar 

  13. Lafeuillade, A. et al. Correlation between surrogate markers, viral load, and disease progression in HIV-1 infection. J. Acquir. Immune Defic. Syndr. 7, 1028–1033 (1994).

    CAS  PubMed  Google Scholar 

  14. Yerly, S. et al. A critical assessment of the prognostic value of HIV-1 RNA level and CD4+ cell counts in HIV-infected patients. Arch. Int. Med. 158, 247–252 (1998).

    Article  CAS  Google Scholar 

  15. Sulkowski, M. S. et al. The effect of acute infectious illness on plasma human immunodeficiency virus (HIV) type 1 load and the expression of serologic markers of immune activation among HIV–infected adults. J. Infect. Dis. 178, 1642–1648 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Toossi, Z. et al. Impact of tuberculosis on HIV-1 activity in dually infected patients. Clin. Exp. Immunol. 123, 233–238 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hoffman, I. F. et al. The effect of Plasmodium falciparum malaria on HIV-1 RNA blood plasma concentrations. AIDS 13, 487–494 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Mole, L., Ripich, S., Margolis, D. & Holodniy, M. The impact of active herpes simplex virus infection on human immunodeficiency virus load. J. Infect. Dis. 176, 766–770 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Wolday, D. et al. Treatment of intestinal worms is associated with decreased HIV plasma viral load. J. Acquir. Immune Defic. Syndr. 31, 56–62 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Koopman, J. S. et al. The role of early HIV infection in the spread of HIV through populations. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 14, 249–258 (1997). Discusses the importance of early HIV infections in the spread of HIV.

    Article  CAS  PubMed  Google Scholar 

  21. Musey, L. et al. Cytotoxic T-cell responses, viral load, and disease progression in early human immunodeficiency virus type 1 infection. N. Engl. J. Med. 337, 1267–1274 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Wawer, M. J. et al. HIV-1 transmission per coital act, by stage of HIV infection in the HIV+ index partner, in discordant couples, Rakai, Uganda. Abstract 40. Tenth conference on retroviruses and opportunistic infections, Boston, USA (2003).

  23. Pilcher, C. D. et al. Frequent detection of acute primary HIV infection in men in Malawi: reconsideration of counseling and testing approaches. Abstract 154. Tenth conference on retroviruses and opportunistic infections, Boston, USA (2003).

  24. Pilcher, C. D. et al. Semen viral dynamics in acute HIV infection: implications for sexual transmission. XIV International AIDS Conference, Barcelona. [online], (cited 7 Nov 2003), <http://63.126.3.84/2002/Posters/13687.pdf> (2002).

  25. Dyer, J. R. et al. High levels of human immunodeficiency virus type 1 in blood and semen of seropositive men in sub-Saharan Africa. J. Infect. Dis. 177, 1742–1746 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Chakraborty, H. et al. Viral burden in genital secretions determines male-to-female sexual transmission of HIV-1: a probabilistic empiric model. AIDS 15, 621–627 (2001). The authors developed a model to predict the probability of sexual transmission.

    Article  CAS  PubMed  Google Scholar 

  27. Hart, C. E. et al. Correlation of human immunodeficiency virus type 1 RNA levels in blood and the female genital tract. J. Infect. Dis. 179, 871–882 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Chakraborty, H., Helms, R. W., Sen, P. K. & Cohen, M. S. Estimating correlation by using a general linear mixed model: evaluation of the relationship between the concentration of HIV-1 RNA in blood and semen. Stat. Med. 22, 1457–1464 (2003).

    Article  PubMed  Google Scholar 

  29. Gupta, P. et al. High viral load in semen of human immunodeficiency virus type-1 infected men at all stages of disease and its reduction by therapy with protease and nonnucleoside reverse transcriptase inhibitors. J. Virol. 71, 6271–6275 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cu-Uvin, S. et al. Effect of highly active antiretroviral therapy on cervicovaginal HIV-1 RNA. AIDS 14, 415–421 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Vernazza, P. et al. Potent antiretroviral treatment of HIV-1 infection results in suppression of the seminal shedding of HIV. AIDS 14, 117–121 (2000). One of the studies proving that effective systemic antiretroviral therapy reduces semen viral loads.

    Article  CAS  PubMed  Google Scholar 

  32. John, G. C. et al. Genital shedding of human immunodeficiency virus type 1 DNA during pregnancy: association with immunosuppression, abnormal cervical or vaginal discharge, and severe vitamin A deficiency. J. Infect. Dis. 175, 57–62 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Ghys, P. D. et al. The associations between cervicovaginal HIV shedding, sexually transmitted diseases and immunosuppression in female sex workers in Abidjan, Cote d'Ivoire. AIDS 11, F85–F93 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Fleming, D. T. & Wasserheit, J. N. From epidemiological synergy to public health policy and practice: the contribution of other sexually transmitted diseases to sexual transmission of HIV infection. Sex. Trans. Infect. 75, 3–17 (1999). One of the most cited reviews on the relationship of sexually transmitted diseases and HIV.

    Article  CAS  Google Scholar 

  35. Rottingen, J.-A., Cameron, D. W. & Garnett, G. P. A systematic review of the epidemiologic interactions between classic sexually transmitted diseases and HIV. Sex. Trans. Dis. 28, 579–597 (2001).

    Article  CAS  Google Scholar 

  36. Coombs, R. W., Reichelderfer, P. S. & Landay, A. L. Recent observations on HIV type 1 infection in the genital tract of men and women. AIDS 17, 455–480 (2003).

    PubMed  Google Scholar 

  37. Mostad, S. B. et al. Hormonal contraception, vitamin A deficiency, and other risk factors for shedding of HIV-1 infected cells from the cervix and vagina. Lancet 350, 922–927 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Baeten, J. M. et al. Selenium deficiency is associated with shedding of HIV-1 infected cells in the female genital tract. J. Acquir. Immune Defic. Syndr. 26, 360–364 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Baeten, J. M. et al. Vitamin A supplementation and human immunodeficiency virus type 1 shedding in women: results of a randomized clinical trial. J. Infect. Dis. 185, 1187–1191 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Shey, W. I., Brocklehurst, P. & Sterne, J. A. Vitamin A supplementation for reducing the risk of mother-to-child transmission of HIV infection. Cochrane Database Syst. Rev. 3, CD003648; 2002

    Google Scholar 

  41. Fawzi, W. W. et al. Randomized trial of vitamin A supplements in relation to transmission of HIV-1 through breastfeeding and early child mortality. AIDS 16, 1935–1944 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Hogan, C. M. & Hammer, S. M. Host determinants in HIV infection and disease part 2: genetic factors and implications for antiretroviral therapeutics. Ann. Intern. Med. 134, 978–996 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Ping, L. H. et al. Characterization of V3 sequence heterogeneity in subtype C human immunodeficiency virus type 1 isolates from Malawi: under-representation of X4 variants. J. Virol. 73, 6271–6281 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Halperin, D. T. Dry sex practices and HIV infection in the Dominican Republic and Haiti. Sex. Trans. Infect. 75, 445–446 (1999).

    Article  CAS  Google Scholar 

  45. Van Damme, L. et al. Effectiveness of COL-1492, a nonoxynol-9 vaginal gel, on HIV-1 transmission in female sex workers: a randomized controlled trial. Lancet 360, 971–977 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Al Jabri, A. A. HLA and in vitro susceptibility to HIV infection. Mol. Immunol. 38, 959–967 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Sibbald, B. India and China face AIDS crisis. CMAJ 169, 330 (2003).

    PubMed  PubMed Central  Google Scholar 

  48. Lehner, T. The role of CCR5 chemokine ligands and antibodies to CCR5 coreceptors in preventing HIV infection. Trends Immunol. 23, 347–351 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Feng, T. et al. Distribution of the CCR5 gene 32-base-pair deletion and CCR5 expression in Chinese minorities. J. Acquir. Immune Defic. Syndr. 32, 131–134 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Overbaugh, J. et al. Studies of human immunodeficiency virus type 1 mucosal viral shedding and transmission in Kenya. J. Infect. Dis. 179, S401–S404 (1999).

    Article  PubMed  Google Scholar 

  51. Long, E. M. et al. Gender differences in HIV-1 diversity at time of infection. Nature Med. 6, 71–75 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Smith, S. M., Baskin, G. B. & Marx, P. A. Estrogen protects against vaginal transmission of simian immunodeficiency virus. J. Infect. Dis. 182, 708–715 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Mbopi-Keou, F. X. et al. Interactions between herpes simplex virus type 2 and human immunodeficiency virus type 1 infection in African women: opportunities for intervention. J. Infect. Dis. 182, 1090–1096 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Plummer, F. A. et al. Detection of human immunodeficiency virus type 1 (HIV-1) in genital ulcer exudate of HIV-infected men by culture and gene amplification. J. Infect. Dis. 161, 810–811 (1990).

    Article  CAS  PubMed  Google Scholar 

  55. Wright, T. C. Jr, et al. Human immunodeficiency virus 1 expression in the female genital tract in association with cervical inflammation and ulceration. Am. J. Obst. Gyn. 184, 279–285 (2001).

    Article  Google Scholar 

  56. Dyer, J. R. et al. Association of CD4 cell depletion and elevated blood and seminal plasma human immunodeficiency virus type 1 RNA concentrations with genital ulcer disease in HIV-1 infected men in Malawi. J. Infect. Dis. 177, 224–227 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Celum, C. L., Robinson, N. J. & Cohen, M. S. Potential impact of antiviral therapy for HSV-2 and HIV on transmission and acquisition of HIV infection. J. Infect. Dis. (in the press).

  58. Chen, C. Y. et al. Human immunodeficiency virus infection and genital ulcer disease in South Africa: the herpetic connection. Sex. Trans. Dis. 27, 21–29 (2000).

    Article  CAS  Google Scholar 

  59. Schacker, T. et al. Frequent recovery of HIV-1 from genital herpes simplex virus lesions in HIV–1 infected men. JAMA 280, 61–66 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Schacker, T., Zeh, J., Hu, H., Shaughnessy, M. & Corey, L. Changes in plasma human immunodeficiency virus type 1 RNA associated with herpes simplex virus reactivation and suppression. J. Infect. Dis. 186, 1718–1725 (2002).

    Article  PubMed  Google Scholar 

  61. McClelland, R. S. et al. Association between cervical shedding of herpes simplex virus and HIV-1. AIDS 16, 2425–2430 (2002).

    Article  PubMed  Google Scholar 

  62. Hobbs, M. M. et al. Trichomonas vaginalis as a cause of urethritis in Malawian men. Sex. Trans. Dis. 26, 381–387 (1999).

    Article  CAS  Google Scholar 

  63. Price, M. A. et al. Addition of treatment for trichomonas to syndromic management of urethritis in Malawi: a randomized clinical trial. Sex. Trans. Dis. 30, 516–522 (2003).

    Article  CAS  Google Scholar 

  64. Winter, A. J. et al. Asymptomatic urethritis and detection of HIV-1 RNA in seminal plasma. Sex. Trans. Infect. 75, 261–263 (1999).

    Article  CAS  Google Scholar 

  65. Speck, C. E. et al. Risk factors for HIV-1 shedding in semen. Am. J. Epidemiol. 150, 622–631 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Cohen, M. S. et al. Reduction of concentration of HIV-1 in semen after treatment of urethritis: implications for prevention of sexual transmission of HIV-1. Lancet 349, 1868–1873 (1997). This study found that HIV levels in semen increased in persons with urethritis and were reduced by effective therapy for the STD.

    Article  CAS  PubMed  Google Scholar 

  67. Rotchford, K., Strum, A. W. & Wilkinson, D. Effect of coinfection with STDs and of STD treatment on HIV shedding in genital tract secretions: systematic review and data synthesis. Sex. Trans. Dis. 27, 243–248 (2000).

    Article  CAS  Google Scholar 

  68. McClelland, R. S. et al. Treatment of cervicitis is associated with decreased cervical shedding of HIV-1. AIDS 15, 105–110 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Anzala, A. O. et al. Acute sexually transmitted infections increase human immunodeficiency virus type 1 plasma viremia, increase plasma type 2 cytokines, and decrease CD4 counts. J. Infect. Dis. 182, 459–466 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Ho, J. L. et al. Neutrophils from human immunodeficiency virus (HIV)-seronegative donors induce HIV replication from HIV-infected patients' mononuclear cells and cell lines: an in vitro model of HIV transmission facilitated by Chlamydia trachomatis. J. Exp. Med. 190, 1493–1505 (1995).

    Google Scholar 

  71. Mercader, M., Nickoloff, B. J. & Foreman, K. E. Induction of human immunodeficiency virus type 1 replication by human herpesvirus 8. Arch. Pathol. Lab. Med. 125, 785–789 (2001).

    CAS  PubMed  Google Scholar 

  72. Theus, S. A., Harrich, D. A., Gaynor, R., Radolf, J. D. & Norgard, M. V. Treponema pallidum, lipoproteins, and synthetic lipoprotein analogues induce human immunodeficiency virus type-1 gene expression in monocytes via NF-κB activation. J. Infect. Dis. 177, 941–950 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Mostad, S. B. et al. Cervical shedding of cytomegalovirus in human immunodeficiency virus type 1 infected women. J. Med. Virol. 59, 469–473 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Holmes, K. K. et al. (eds) Sexually Transmitted Diseases (McGraw Hill, New York, 1999).

    Google Scholar 

  75. Corey, L. et al. Once daily valacyclovir reduces transmission of genital herpes. Forty-second Interscience Conference on Antimicrobial Agents and Chemotherapy, San Diego, USA. [online], (cited 7 Nov 2003), <http://www.hivandhepatitis.com/2002conf/iccac2002/pages/39.html> (2002).

  76. Reynolds, S. J. et al. Recent herpes simplex virus type 2 acquisition and the risk of human immunodeficiency virus type 1 acquisition in India. J. Infect. Dis. 187, 1513–1521 (2003).

    Article  PubMed  Google Scholar 

  77. Ping, L. H. et al. Effects of genital tract inflammation on human immunodeficiency virus type 1 V3 populations in blood and semen. J. Virol. 74, 8946–8952 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang, H. et al. Human immunodeficiency virus type 1 in the semen of men receiving highly active antiretroviral therapy. New Engl. J. Med. 339, 1803–1808 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Eron, J. J. et al. Resistance of HIV-1 to antiretroviral agents in the blood and seminal plasma: implications for transmission. AIDS 12, F181–189 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Pereira, A. S. et al. The pharmokinetics of amprenavir, zidovudine, and lamivudine in the genital tracts of men infected with human immunodeficiency virus type 1. J. Infect. Dis. 186, 198–204 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Sadiq, S. T. et al. The effects of antiretroviral therapy on HIV-1 RNA loads in seminal plasma in HIV-positive patients with and without urethritis. AIDS 16, 219–225 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Cameron, D. W. et al. Female-to-male transmission of human immunodeficiency virus type 1: risk factors for seroconversion in men. Lancet 2, 403–407 (1989).

    Article  CAS  PubMed  Google Scholar 

  83. Nelson, K. E. et al. The association of herpes simplex type 2, Haemophilus ducreyi, and syphilis with HIV infection in young men in northern Thailand. J. Acquir. Immune Defic. Syndr. Hum. Retrovir. 16, 293–300 (1997).

    Article  CAS  Google Scholar 

  84. Plummer, F. A. et al. Cofactors in male–female sexual transmission of human immunodeficiency virus type 1. J. Infect. Dis. 163, 233–239 (1991).

    Article  CAS  PubMed  Google Scholar 

  85. Kassler, W. J. et al. Seroconversion in patients attending sexually transmitted disease clinics. AIDS 8, 351–355 (1994).

    Article  CAS  PubMed  Google Scholar 

  86. Laga, M. et al. Non-ulcerative sexually transmitted diseases as risk factors for HIV-1 transmission in women: results from a cohort study. AIDS 7, 95–102 (1993). One of the studies exploring the relationship between STDs and HIV transmission.

    Article  CAS  PubMed  Google Scholar 

  87. Dickerson, M. C., Johnston, J., Delea, T. E., White, A. & Andrews, E. The causal role for genital ulcer disease as a risk factor for transmission of human immunodeficiency virus. Sex. Trans. Dis. 23, 429–440 (1996).

    Article  CAS  Google Scholar 

  88. Mehendale, S. M. et al. Incidence and predictors of human immunodeficiency virus type 1 seroconversion in patients attending sexually transmitted disease clinics in India. J. Infect. Dis. 172, 1486–1491 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Collins, K. B., Patterson, B. K., Naus, G. J., Landers, D. V. & Gupta, P. Development of an in vitro organ tissue culture model to study transmission of HIV-1 in the female genital tract. Nature Med. 6, 475–479 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Gupta, P. et al. Memory CD4+ T cells are the earliest detectable human immunodeficiency virus type-1 (HIV-1) infected cells in the female genital mucosal tissue during HIV-1 transmission in an organ culture system. J. Virol. 76, 9868–9876 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Miller, C. J. & Shattock, R. J. Target cells in vaginal HIV transmission. Microbes Infect. 5, 59–67 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Hladik, F., Lentz, G., Delpit, E., McElroy, A. & McElrath, M. J. Coexpression of CCR5 and IL-2 in human genital but not blood cells: implications for the ontogeny of the CCR5 Th1 phenotype. J. Immunol. 163, 2306–2313 (1999).

    CAS  PubMed  Google Scholar 

  93. Patterson, B. K. et al. Repertoire of chemokine receptor expression in the female genital tract: implications for human immunodeficiency virus transmission. Am. J. Pathol. 153, 481–490 (1998). Interesting paper detailing the immune milieu of the female genital tract.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sellati, T. J. et al. Virulent Treponema pallidum, lipoprotein, and synthetic lipopeptides induce CCR5 on human monocytes and enhance susceptibility to infection by human immunodeficiency virus type 1. J. Infect. Dis. 181, 283–293 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Van Laer, L. et al. In vitro stimulation of peripheral blood mononuclear cells from HIV and HIV+ chancroid patients by Haemophilus ducreyi antigens. Clin. Exp. Immunol. 102, 243–250 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Magro, C. M. et al. A morphological study of penile chancroid lesions in human immunodeficiency virus positive and negative African men with a hypothesis concerning the role of chancroid in HIV transmission. Hum. Pathol. 27, 1066–1070 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. Levine, W. C. et al. Increase in endocervical CD4 lymphocytes among women with nonulcerative sexually transmitted diseases. J. Infect. Dis. 177, 167–174 (1998). Intriguing paper showing that cervical CD4 cells increase in women with STDs.

    Article  CAS  PubMed  Google Scholar 

  98. Taha, T. E. et al. Bacterial vaginosis and disturbances of vaginal flora: association with increased acquisition of HIV. AIDS 12, 1699–1706 (1998). Describes an important phenomenon — the role of bacterial vaginosis in HIV transmission.

    Article  CAS  PubMed  Google Scholar 

  99. Martin, H. L. et al. Vaginal lactobacilli, microbial flora and the risk of human immunodeficiency virus type 1 and sexually transmitted disease acquisition. J. Infect. Dis. 180, 1863–1868 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Klebanoff, S. J. & Coombs, R. W. Viricidal effect of Lactobacillus acidophilus on human immunodeficiency virus type 1: possible role in heterosexual transmission. J. Exp. Med. 174, 289–292 (1991).

    Article  CAS  PubMed  Google Scholar 

  101. Wawer, M. J. et al. Control of sexually transmitted diseases for AIDS prevention in Uganda: a randomized community trial. Lancet 353, 525–535 (1999). The Rakai treatment trial did not show any significant reduction in HIV acquisition with intermittant mass therapy for STDs.

    Article  CAS  PubMed  Google Scholar 

  102. Patterson, B. K. et al. Susceptibility to human immunodeficiency virus-1 infection of human foreskin and cervical tissue grown in explant culture. Am. J. Pathol. 161, 867–873 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Gray, R. H. et al. Male circumcision and HIV acquisition and transmission: cohort studies in Rakai, Uganda. AIDS 14, 2371–2381 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Bailey, R. C., Plummer, F. A. & Moses, S. Male circumcision and HIV prevention: current knowledge and future research directions. Lancet Infect. Dis. 1, 223–231 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Buve, A. et al. The multicentre study on factors determining the differential spread of HIV in four African cities: summary and conclusions. AIDS 15, S127–S131 (2001). The four cities study examines two high HIV prevalence cities and two low HIV prevalence cities, and the differences in prevalences of various STDs and sexual behaviours that correlate with high levels of HIV infection.

    Article  PubMed  Google Scholar 

  106. Grosskurth, H. et al. Impact of improved treatment of sexually transmitted diseases on HIV infection in rural Tanzania: randomized controlled trial. Lancet 346, 530–536 (1995). The Mwanza treatment trial showed a significant reduction in HIV infections with improved STD treatment.

    Article  CAS  PubMed  Google Scholar 

  107. Kamali, A. et al. Syndromic management of sexually-transmitted infections and behavior change interventions on transmission of HIV-1 in rural Uganda: a community randomised trial. Lancet 361, 645–652 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Moses, S. et al. Monthly azithromycin chemoprophylaxis in Kenyan female sex workers reduces the incidence of STIs but not HIV: a randomized, placebo-controlled trial. Abstract 27. Fifteenth International Society for Sexually Transmitted Diseases Research Congress, Ottawa, Canada (2003).

  109. Korenromp, E. L. et al. HIV dynamics and behavior change as determinants of the impact of sexually transmitted disease treatment on HIV transmission in the context of the Rakai trial. AIDS 16, 2209–2218 (2002).

    Article  PubMed  Google Scholar 

  110. Kelly, J. A. & Amirkhanian, Y. A. The newest epidemic: a review of HIV/AIDS in central and eastern Europe. Int. J. STD AIDS 14, 361–371 (2003).

    Article  PubMed  Google Scholar 

  111. Cohen, M. S., Ping, G., Fox, K. & Henderson, G. E. Sexually transmitted diseases in the People's Republic of China Y2K: back to the future. Sex. Trans. Dis. 27, 143–145 (2000).

    Article  CAS  Google Scholar 

  112. Rogers, S. J. et al. Reaching and identifying the STD/HIV risk of sex workers in Beijing. AIDS Educ. Prev. 14, 217–227 (2002).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Hobbs and S. Edupuganti for their review of the manuscripts, and to M. Hobbs for her help with editing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myron S. Cohen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Infectious Disease Information

bacterial vaginosis

chlamydia

gonorrhoea

HIV

syphilis

trichomonas

LocusLink

CCR5

CD4

CXCR4

Glossary

HIV DISCORDANT COUPLE

Two sexual partners in, usually, a stable monogamous relationship, in which one person is infected with HIV and the other is not.

SEROCONVERSION

The appearance of antibodies in the serum after exposure to an antigen.

CLADE

A group of species derived from a single ancestor that includes all the descendants of that ancestor.

HUMAN LEUKOCYTE ANTIGEN

Also known as major histocompatibility complex (MHC), it is a glycoprotein that is found on the surface of cells that present antigen for recognition by T cells.

MUCOSAL NEOPLASM

Usually carcinomas, such as cervical carcinomas, that are associated with certain types of HIV.

COHORT STUDIES

Studies in which subsets of a defined population are identified.

CHANCROID LESIONS

Single or multiple painful, necrotizing ulcers at the site of infection, which are frequently accompanied by painful swelling and suppuration of regional lymph nodes.

ADJUSTED-ODDS RATIO

The estimated odds ratio after any confounding factors have been taken into account.

UNIVARIATE ANALYSIS

Examines the effect of one variable.

MULTIVARIATE ANALYSIS

Analysis that considers several dependent variables simultaneously.

INGUINAL ADENOPATHY

Swelling of the lymph nodes that are located in the groin.

ADJUSTED-RISK RATIO

The estimated risk ratio after any confounding factors have been taken into account.

LANGERHANS CELLS

Dendritic, antigen-presenting cells that contain characteristic racquet-shaped granules, known as Birbeck granules, and which express the CD1a antigen. Principally found in the stratified squamous epithelium.

SQUAMOUS EPITHELIUM

An epithelium consisting of flattened cells. Can be simple (for example, endothelium) or stratified (for example, epidermis).

COLUMNAR EPITHELIUM

An epithelium that is formed of a single layer of cells, which are taller than they are wide.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galvin, S., Cohen, M. The role of sexually transmitted diseases in HIV transmission. Nat Rev Microbiol 2, 33–42 (2004). https://doi.org/10.1038/nrmicro794

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro794

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing