Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host

Abstract

Enteroviruses are believed to contribute to the pathogenesis of type 1 diabetes mellitus (T1DM). In this Review, the interplay between infection with enteroviruses, the immune system and host genes is discussed. Data from retrospective and prospective epidemiological studies strongly suggest the involvement of enteroviruses, such as coxsackievirus B, in the development of T1DM. Enteroviral RNA and/or proteins can be detected in tissues of patients with T1DM. Isolation of coxsackievirus B4 from the pancreas of patients with T1DM or the presence of enteroviral components in their islets strengthens the hypothesis of a relationship between the virus and the disease. Enteroviruses can play a part in the early phase of T1DM through the infection of β cells and the activation of innate immunity and inflammation. In contrast with its antiviral role, virus-induced interferon α can be deleterious, acting as an initiator of the autoimmunity directed against β cells. Enteroviruses, through persistent and/or successive infections, can interact with the adaptive immune system. Host genes, such as IFIH1, that influence susceptibility to T1DM are associated with antiviral activities. An increased activity of the IFIH1 protein may promote the development of T1DM. An improved knowledge of the pathogenic mechanisms of enterovirus infections should help to uncover preventive strategies for T1DM.

Key Points

  • Enteroviruses have been detected in blood, gut and pancreas of patients with type 1 diabetes mellitus (T1DM)

  • Enteroviruses act in the early phase of T1DM; interaction with the innate immune system and inflammatory mediators might induce and amplify the immune assault against pancreatic β cells

  • By interaction with the adaptive immune system, enteroviruses play a part in the pathogenesis of T1DM through mechanisms that are not mutually exclusive: molecular mimicry, bystander activation, and disturbance of tolerance

  • Enteroviruses interact with the adaptive immune system, which may also have a role in the pathogenesis of T1DM because antiviral antibodies are able to enhance the infection of monocytes or macrophages

  • Enteroviruses acting through antiviral effectors—especially the pool of cytotoxic T lymphocytes enriched in the course of successive infections—may damage infected β cells and contribute to the release of self-antigens

  • Genes that encode proteins with antiviral activities promote T1DM, and viral infections together with type 1 interferons can contribute to the development of the disease

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Enterovirus structure and replication.
Figure 2: IFIH1-mediated β-cell response to infection with an enterovirus.
Figure 3: Virus-induced pathogenesis of type 1 diabetes mellitus (T1DM).

Similar content being viewed by others

References

  1. Gale, E. A. The rise of childhood type 1 diabetes in the 20th century. Diabetes 51, 3353–3361 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Jaïdane, H. & Hober, D. Role of coxsackievirus B4 in the pathogenesis of type 1 diabetes. Diabetes Metab. 34, 537–548 (2008).

    Article  PubMed  CAS  Google Scholar 

  3. Kondrashova, A. et al. A six-fold gradient in the incidence of type 1 diabetes at the eastern border of Finland. Ann. Med. 37, 67–72 (2005).

    Article  PubMed  Google Scholar 

  4. Nejentsev, S. et al. Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature 450, 887–892 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Smyth, D. J. A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat. Genet. 38, 617–619 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Todd, J. A. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat. Genet. 39, 857–864 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Concannon, P. et al. A human type 1 diabetes susceptibility locus maps to chromosome 21q22.3. Diabetes 57, 2858–2861 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cooper, J. D. Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nat. Genet. 40, 1399–1401 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jaïdane, H. et al. Coxsackievirus B4 and type 1 diabetes pathogenesis: contribution of animal models. Diabetes Metab. Res. Rev. 25, 591–603 (2009).

    Article  PubMed  CAS  Google Scholar 

  10. Bach, J. F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–920 (2002).

    Article  PubMed  Google Scholar 

  11. Goldberg, E. & Krause, I. Infection and type 1 diabetes mellitus—a two edged sword? Autoimmun. Rev. 8, 682–686 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Yoon, J. W. A new look at viruses in type 1 diabetes. Diabetes Metab. Rev. 11, 83–107 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Richer, M. J. & Horwitz, M. S. Coxsackievirus infection as an environmental factor in the etiology of type 1 diabetes. Autoimmun. Rev. 8, 611–615 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Hyöty, H. Enterovirus infections and type 1 diabetes. Ann. Med. 34, 138–147 (2002).

    Article  PubMed  Google Scholar 

  15. Haverkos, H. W., Battula, N., Drotman, D. P. & Rennert, O. M. Enteroviruses and type 1 diabetes mellitus. Biomed. Pharmacother. 57, 379–385 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Hyöty, H. & Taylor, K. W. The role of viruses in human diabetes. Diabetologia 45, 1353–1361 (2002).

    Article  PubMed  CAS  Google Scholar 

  17. Nairn, C., Galbraith, D. N., Taylor, K. W. & Clements, G. B. Enterovirus variants in the serum of children at the onset of type 1 diabetes mellitus. Diabet. Med. 16, 509–513 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Yin, H., Berg, A. K., Tuvemo, T. & Frisk, G. Enterovirus RNA is found in peripheral blood mononuclear cells in a majority of type 1 diabetic children at onset. Diabetes 51, 1964–1971 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Moya-Suri, V. et al. Enterovirus RNA sequences in sera of schoolchildren in the general population and their association with type 1-diabetes-associated autoantibodies. J. Med. Microbiol. 54, 879–883 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Sarmiento, L. et al. Occurrence of enterovirus RNA in serum of children with newly diagnosed type 1 diabetes and islet cell autoantibody-positive subjects in a population with a low incidence of type 1 diabetes. Autoimmunity 40, 540–545 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Elfaitouri, A. et al. Recent enterovirus infection in type 1 diabetes: evidence with a novel IgM method. J. Med. Virol. 79, 1861–1867 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Chehadeh, W. et al. Increased level of interferon-α in blood of patients with insulin-dependent diabetes mellitus: relationship with coxsackievirus B infection. J. Infect. Dis. 181, 1929–1939 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Oikarinen, M. et al. Detection of enteroviruses in the intestine of type 1 diabetic patients. Clin. Exp. Immunol. 151, 71–75 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Elfving, M. et al. Maternal enterovirus infection during pregnancy as a risk factor in offspring diagnosed with type 1 diabetes between 15 and 30 years of age. Exp. Diabetes Res. 2008, 271958 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Imagawa, A., Hanafusa, T., Makino, H., Miyagawa, J. I. & Juto, P. High titres of IgA antibodies to enterovirus in fulminant type-1 diabetes. Diabetologia 48, 290–293 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Akatsuka, H. et al. A case of fulminant type 1 diabetes with coxsackie B4 virus infection diagnosed by elevated serum levels of neutralizing antibody. Diabetes Res. Clin. Pract. 84, e50–e52 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Gerling, I., Chatterjee, N. K. & Nejman, C. Coxsackievirus B4-induced development of antibodies to 64,000-Mr islet autoantigen and hyperglycemia in mice. Autoimmunity 10, 49–56 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Hyöty, H. et al. A prospective study of the role of coxsackie B and other enterovirus infections in the pathogenesis of IDDM. Childhood Diabetes in Finland (DiMe) Study Group. Diabetes 44, 652–657 (1995).

    Article  PubMed  Google Scholar 

  29. Sadeharju, K., Knip, M., Hiltunen, M., Akerblom, H. K. & Hyöty, H. The HLA-DR phenotype modulates the humoral immune response to enterovirus antigens. Diabetologia 46, 1100–1105 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Dahlquist, G. G., Boman, J. E. & Juto, P. Enteroviral RNA and IgM antibodies in early pregnancy and risk for childhood-onset IDDM in offspring. Diabetes Care 22, 364–365 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Dahlquist, G. G., Ivarsson, S., Lindberg, B. & Forsgren. M. Maternal enteroviral infection during pregnancy as a risk factor for childhood IDDM. A population-based case-control study. Diabetes 44, 408–413 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Foulis, A. K., Farquharson, M. A. & Meager, A. Immunoreactive alpha-interferon in insulin-secreting beta cells in type 1 diabetes mellitus. Lancet 2, 1423–1427 (1987).

    Article  CAS  PubMed  Google Scholar 

  33. Huang, X. et al. Interferon expression in the pancreases of patients with type I diabetes. Diabetes 44, 658–664 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Dotta, F. et al. Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc. Natl Acad. Sci. USA 104, 5115–5120 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yoon, J. W., Austin, M., Onodera, T. & Notkins, A. L. Isolation of a virus from the pancreas of a child with diabetic ketoacidosis (virus-induced diabetes mellitus). N. Engl. J. Med. 300, 1173–1179 (1979).

    Article  CAS  PubMed  Google Scholar 

  36. Ylipaasto, P. et al. Enterovirus infection in human pancreatic islet cells, islet tropism in vivo and receptor involvement in cultured islet beta cells. Diabetologia 47, 225–239 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Richardson, S. J., Willcox, A., Bone, A. J., Foulis, A. K. & Morgan, N. G. The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes. Diabetologia 5, 1143–1151 (2009).

    Article  CAS  Google Scholar 

  38. Oikarinen, M. et al. Analysis of pancreas tissue in a child positive for islet cell antibodies. Diabetologia 51, 1796–1802 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Oldstone, M. B. Prevention of type I diabetes in nonobese diabetic mice by virus infection. Science 239, 500–502 (1988).

    Article  CAS  PubMed  Google Scholar 

  40. Christen, U. et al. Cure of prediabetic mice by viral infections involves lymphocyte recruitment along an IP-10 gradient. J. Clin. Invest. 113, 74–84 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bach, J. F. Infections and autoimmune diseases. J. Autoimmun. 25 (Suppl.), 74–80 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Viskari, H. et al. Relationship between the incidence of type 1 diabetes and maternal enterovirus antibodies: time trends and geographical variation. Diabetologia 48, 1280–1287 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Roivainen, M. et al. Mechanisms of coxsackievirus-induced damage to human pancreatic beta-cells. J. Clin. Endocrinol. Metab. 85, 432–440 (2000).

    CAS  PubMed  Google Scholar 

  44. Chehadeh, W. et al. Persistent infection of human pancreatic islets by coxsackievirus B is associated with alpha interferon synthesis in beta cells. J. Virol. 74, 10153–10164 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Frisk, G. & Diderholm, H. Tissue culture of isolated human pancreatic islets infected with different strains of coxsackievirus B4: assessment of virus replication and effects on islet morphology and insulin release. Int. J. Exp. Diabetes Res. 1, 165–175 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Klemola, P., Kaijalainen, S., Ylipaasto, P. & Roivainen, M. Diabetogenic effects of the most prevalent enteroviruses in Finnish sewage. Ann. NY Acad. Sci. 1150, 210–212 (2008).

    Article  PubMed  Google Scholar 

  47. Szopa, T. M., Ward, T., Dronfield, D. M., Portwood, N. D. & Taylor, K. W. Coxsackie B4 viruses with the potential to damage beta cells of the islets are present in clinical isolates. Diabetologia 33, 325–328 (1990).

    Article  CAS  PubMed  Google Scholar 

  48. Roivainen, M. Enteroviruses: new findings on the role of enteroviruses in type 1 diabetes. Int. J. Biochem. Cell. Biol. 38, 721–725 (2005).

    Article  PubMed  CAS  Google Scholar 

  49. Ylipaasto, P. et al. Global profiling of coxsackievirus- and cytokine-induced gene expression in human pancreatic islets. Diabetologia 48, 1510–1522 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Yoon, J. W., Onodera, T. & Notkins, A. L. Virus-induced diabetes mellitus. XV. Beta cell damage and insulin-dependent hyperglycemia in mice infected with coxsackie virus B4. J. Exp. Med. 148, 1068–1080 (1978).

    Article  CAS  PubMed  Google Scholar 

  51. Coppieters, K. T. & von Herrath, M. G. Histopathology of type 1 diabetes: old paradigms and new insights. Rev. Diabet. Stud. 6, 85–96 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Atkinson, M. A. & Gianani, R. The pancreas in human type 1 diabetes: providing new answers to age-old questions. Curr. Opin. Endocrinol. Diabetes Obes. 16, 279–285 (2009).

    Article  PubMed  Google Scholar 

  53. Tracy, S. & Drescher, K. M. Coxsackievirus infections and NOD mice relevant models of protection from, and induction of, type 1 diabetes. Ann. NY Acad. Sci. 1103, 143–151 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Tracy, S. et al. Toward testing the hypothesis that group B coxsackieviruses (CVB) trigger insulin-dependent diabetes: inoculating nonobese diabetic mice with CVB markedly lowers diabetes incidence. J. Virol. 76, 12097–12111 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bortell, R., Pino, S. C., Greiner, D. L., Zipris, D. & Rossini, A. A. Closing the circle between the bedside and the bench: Toll-like receptors in models of virally induced diabetes. Ann. NY Acad. Sci. 1150, 112–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Rossini, A. A. Autoimmune diabetes and the circle of tolerance. Diabetes 53, 267–275 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Eizirik, D. L., Colli, M. L. & Ortis, F. The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat. Rev. Endocrinol. 5, 219–226 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Hultcrantz, M. et al. Interferons induce an antiviral state in human pancreatic islet cells. Virology 367, 92–101 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Wen, L., Peng, J., Li, Z. & Wong, F. S. The effect of innate immunity on autoimmune diabetes and the expression of Toll-like receptors on pancreatic islets. J. Immunol. 172, 3173–3180 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Rasschaert, J. et al. Toll-like receptor 3 and STAT-1 contribute to double-stranded RNA+ interferon-gamma-induced apoptosis in primary pancreatic beta-cells. J. Biol. Chem. 280, 33984–33991 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Liu, D., Cardozo, A. K., Darville, M. I. & Eizirik, D. L. Double-stranded RNA cooperates with interferon-gamma and IL-1 beta to induce both chemokine expression and nuclear factor-kappa B-dependent apoptosis in pancreatic beta-cells: potential mechanisms for viral-induced insulitis and beta-cell death in type 1 diabetes mellitus. Endocrinology 143, 1225–1234 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Dogusan, Z. et al. Double-stranded RNA induces pancreatic beta-cell apoptosis by activation of the toll-like receptor 3 and interferon regulatory factor 3 pathways. Diabetes 57, 1236–1245 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Stewart, T. A. et al. Induction of type 1 diabetes by interferon-alpha in transgenic mice. Science 260, 1942–1946 (1993).

    Article  CAS  PubMed  Google Scholar 

  64. Chakrabarti, D., Hultgren, B. & Stewart, T. A. IFN-alpha induces autoimmune T cells through the induction of intracellular adhesion molecule-1 and B7.2. J. Immunol. 157, 522–528 (1996).

    CAS  PubMed  Google Scholar 

  65. Scarim, A. L. et al. Mechanisms of beta-cell death in response to double-stranded (ds) RNA and interferon-gamma: dsRNA-dependent protein kinase apoptosis and nitric oxide-dependent necrosis. Am. J. Pathol. 159, 273–283 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Flodström-Tullberg, M. et al. RNase L and double-stranded RNA-dependent protein kinase exert complementary roles in islet cell defense during coxsackievirus infection. J. Immunol. 174, 1171–1177 (2005).

    Article  PubMed  Google Scholar 

  67. Colbère-Garapin, F. in Molecular Biology of Picornaviruses (eds Semler, B. L. & Wimmer, E.) (American Society for Microbiology, Washington DC, 2002).

    Google Scholar 

  68. Frisk, G., Jansson, K., Ericsson, M. & Diderholm, H. Differences in inhibition of replication between Coxsackie B4 virus strains in various cell lines by antibodies to some cell surface proteins. Virus Res. 73, 121–130 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Skarsvik, S. et al. Decreased in vitro type 1 immune response against coxsackie virus B4 in children with type 1 diabetes. Diabetes 55, 996–1003 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. See, D. M. & Tilles, J. G. Pathogenesis of virus-induced diabetes in mice. J. Infect. Dis. 171, 1131–1138 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. Merkler, D. et al. “Viral déjà vu” elicits organ-specific immune disease independent of reactivity to self. J. Clin. Invest. 116, 1254–1263 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. von Herrath, M., Sanda, S. & Herold, K. Type 1 diabetes as a relapsing–remitting disease? Nat. Rev. Immunol. 7, 988–994 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Lehmann, P. V., Sercarz, E. E., Forsthuber, T., Dayan, C. M. & Gammon, G. Determinant spreading and the dynamics of the autoimmune T-cell repertoire. Immunol. Today 14, 203–208 (1993).

    Article  CAS  PubMed  Google Scholar 

  74. Paronen, J. et al. Glutamate decarboxylase-reactive peripheral blood lymphocytes from patients with IDDM express gut-specific homing receptor alpha4beta7-integrin. Diabetes 46, 583–588 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Horwitz, M. S. et al. Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat. Med. 4, 781–785 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Serreze, D. V., Ottendorfer, E. W., Ellis, T. M., Gauntt, C. J. & Atkinson, M. A. Acceleration of type 1 diabetes by a coxsackievirus infection requires preexisting critical mass of autoreactive T-cells in pancreatic islets. Diabetes 49, 708–711 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Horwitz, M. S., Fine, C., Ilic, A. & Sarvetnick, N. Requirements for viral-mediated autoimmune diabetes: beta-cell damage and immune infiltration. J. Autoimmun. 16, 211–217 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Horwitz, M. S., Ilic, A., Fine, C., Rodriguez, E. & Sarvetnick, N. Presented antigen from damaged pancreatic beta cells activates autoreactive T cells in virus-mediated autoimmune diabetes. J. Clin. Invest. 109, 79–87 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Filippi, C. M. & von Herrath, M. G. Viral trigger for type 1 diabetes: pros and cons. Diabetes 57, 2863–2871 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Christen, U. & von Herrath, M. G. Induction, acceleration or prevention of autoimmunity by molecular mimicry. Mol. Immunol. 40, 1113–1120 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Vreugdenhil, G. R. et al. Molecular mimicry in diabetes mellitus: the homologous domain in coxsackie B virus protein 2C and islet autoantigen GAD65 is highly conserved in the coxsackie B-like enteroviruses and binds to the diabetes associated HLA-DR3 molecule. Diabetologia 41, 40–46 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Schloot, N. C. et al. Molecular mimicry in type 1 diabetes mellitus revisited: T-cell clones to GAD65 peptides with sequence homology to Coxsackie or proinsulin peptides do not crossreact with homologous counterpart. Hum. Immunol. 62, 299–309 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Härkönen, T. et al. Enterovirus infection may induce humoral immune response reacting with islet cell autoantigens in humans. J. Med. Virol. 69, 426–440 (2003).

    Article  PubMed  CAS  Google Scholar 

  84. Oldstone, M. B., Nerenberg, M., Southern, P., Price, J. & Lewicki, H. Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. Cell 65, 319–331 (1991).

    Article  CAS  PubMed  Google Scholar 

  85. Christen, U., Hintermann, E., Holdener, M. & von Herrath, M. G. Viral triggers for autoimmunity: Is the 'glass of molecular mimicry' half full or half empty? J. Autoimmun. 34, 38–44 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Sevilla, N. et al. Virus-induced diabetes in a transgenic model: role of cross-reacting viruses and quantitation of effector T cells needed to cause disease. J. Virol. 74, 3284–3292 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Christen, U. et al. A viral epitope that mimics a self antigen can accelerate but not initiate auto-immune diabetes. J. Clin. Invest. 114, 1290–1298 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Brehm, M. A. et al. T cell immunodominance and maintenance of memory regulated by unexpectedly cross-reactive pathogens. Nat. Immunol. 3, 627–634 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Selin, L. K. & Welsh, R. M. Plasticity of T cell memory responses to viruses. Immunity 20, 5–16 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Filippi, C. M., Estes, E. A., Oldham, J. E. & von Herrath, M. G. Immunoregulatory mechanisms triggered by viral infections protect from type 1 diabetes in mice. J. Clin. Invest. 119, 1515–1523 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ansari, M. J. et al. The programmed death–1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J. Exp. Med. 198, 63–69 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fife, B. T. et al. Insulin-induced remission in new-onset NOD mice is maintained by the PD-1-PD-L1 pathway. J. Exp. Med. 203, 2737–2747 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zipris, D. et al. Infections that induce autoimmune diabetes in BBDR rats modulate CD4+CD25+ T cell populations. J. Immunol. 170, 3592–3602 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Johnston, C. et al. Alterations in T-lymphocyte subpopulations in type I diabetes. Exploration of genetic influence in identical twins. Diabetes 37, 1484–1488 (1988).

    Article  CAS  PubMed  Google Scholar 

  95. Faustman, D., Schoenfeld, D. & Ziegler, R. T-lymphocyte changes linked to autoantibodies. Association of insulin autoantibodies with CD4+CD45R+ lymphocyte subpopulation in prediabetic subjects. Diabetes 40, 590–597 (1991).

    Article  CAS  PubMed  Google Scholar 

  96. Chatterjee, N. K., Hou, J., Dockstader, P. & Charbonneau, T. Coxsackievirus B4 infection alters thymic, splenic, and peripheral lymphocyte repertoire preceding onset of hyperglycemia in mice. J. Med. Virol. 38, 124–131 (1992).

    Article  CAS  PubMed  Google Scholar 

  97. Brilot, F., Jaïdane, H., Geenen, V. & Hober, D. Coxsackievirus B4 infection of murine foetal thymus organ cultures. J. Med. Virol. 80, 659–666 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Brilot, F. et al. Persistent infection of human thymic epithelial cells by coxsackievirus B4. J. Virol. 76, 5260–5265 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Brilot, F., Geenen, V., Hober, D. & Stoddart, C. A. Coxsackievirus B4 infection of human fetal thymus cells. J. Virol. 78, 9854–9861 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sauter, P. & Hober, D. Mechanisms and results of the antibody-dependent enhancement of viral infections and role in the pathogenesis of coxsackievirus B-induced diseases. Microbes Infect. 11, 443–451 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Girn, J., Kavoosi, M. & Chantler, J. Enhancement of coxsackievirus B3 infection by antibody to a different coxsackievirus strain. J. Gen. Virol. 83, 351–358 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Kishimoto, C., Kurokawa, M. & Ochiai, H. Antibody-mediated immune enhancement in coxsackievirus B3 myocarditis. J. Mol. Cell. Cardiol. 34, 1227–1238 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Hober, D., Chehadeh, W., Bouzidi, A. & Wattré, P. Antibody-dependent enhancement of coxsackievirus B4 infectivity of human peripheral blood mononuclear cells results in increased interferon-alpha synthesis. J. Infect. Dis. 184, 1098–1108 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Hober, D. et al. Circulating and cell-bound antibodies increase coxsackievirus B4-induced production of IFN-alpha by peripheral blood mononuclear cells from patients with type 1 diabetes. J. Gen. Virol. 83, 2169–2176 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Chehadeh, W. et al. Viral protein VP4 is a target of human antibodies enhancing coxsackievirus B4- and B3-induced synthesis of alpha interferon. J. Virol. 79, 13882–13891 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sauter, P. et al. Role of the capsid protein VP4 in the plasma-dependent enhancement of the Coxsackievirus B4E2-infection of human peripheral blood cells. Virus Res. 125, 183–190 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Sauter, P. et al. A part of the VP4 capsid protein exhibited by coxsackievirus B4 E2 is the target of antibodies contained in plasma from patients with type 1 diabetes. J. Med. Virol. 80, 866–878 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Mardis, E. R. The impact of next-generation sequencing technology on genetics. Trends Genet. 24, 133–141 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Concannon, P., Risch, S. S. & Nepom, G. T. Genetics of type 1A diabetes. N. Engl. J. Med. 360, 1646–1654 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Ueda, H. et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423, 506–511 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Lowe, C. E. et al. Large-scale genetic fine mapping and genetic-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nat. Genet. 39, 1074–1082 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Field, L. L. et al. OAS1 splice site polymorphism controlling antiviral enzyme activity influences susceptibility to type 1 diabetes. Diabetes 54, 1588–1591 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Bonnevie-Nielsen, V. et al. Variation in antiviral 2′, 5′-oligoadenylate synthetase (2′5′OAS) enzyme activity is controlled by a single-nucleotide polymorphism at a splice-acceptor site in the OAS1 gene. Am. J. Hum. Genet. 76, 623–633 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ghosh, A., Sarkar, S. N., Rowe, T. M. & Sen, G. C. A specific isozyme of 2′-5′ oligoadenylate synthetase is a dual function proapoptotic protein of the Bcl-2 family. J. Biol. Chem. 276, 25447–25455 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Burton, P. R. et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat. Genet. 39, 1329–1337 (2006).

    Google Scholar 

  116. Nejentsev, S., Walker, N., Riches, D., Egholm, M. & Todd, J. A. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324, 387–389 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Shigemoto, T. et al. Identification of loss of function mutations in human genes encoding RIG-I and MDA5: implications for resistance to type I diabetes. J. Biol. Chem. 284, 13348–13354 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yoneyama, M. et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol. 175, 2851–2858 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Meylan, E., Tschopp, J. & Karin, M. Intracellular pattern recognition receptors in the host response. Nature 442, 39–44 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Liu, S. et al. IFIH1 polymorphisms are significantly associated with type 1 diabetes and IFIH1 gene expression in peripheral blood mononuclear cells. Hum. Mol. Genet. 18, 358–365 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Gröschel, S. et al. TLR-mediated induction of negative regulatory ligands on dendritic cells. J. Mol. Med. 86, 443–455 (2008).

    Article  PubMed  CAS  Google Scholar 

  122. Viskari, H. et al. Relationship between the incidence of type 1 diabetes and enterovirus infections in different European populations: results from the EPIVIR project. J. Med. Virol. 72, 610–617 (2004).

    Article  PubMed  Google Scholar 

  123. von Herrath, M. Diabetes: A virus–gene collaboration. Nature 459, 518–519 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. von Herrath, M. Can we learn from viruses how to prevent type 1 diabetes? The role of viral infections in the pathogenesis of type 1 diabetes and the development of novel combination therapies. Diabetes 58, 2–11 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kawai, T. & Akira, S. Toll-like receptor and RIG-I-like receptor signaling. Ann. NY Acad. Sci. 1143, 1–20 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Colli, M. L., Moore, F., Gurzov, E. N., Ortis, F. & Eizirik D. L. MDA5 and PTPN2, two candidate genes for type 1 diabetes, modify pancreatic beta-cell responses to the viral by-product double stranded RNA. Hum. Mol. Genet. 19, 135–146 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the team of the Laboratory of Virology/UPRES EA3610 and all their collaborators. The authors' research is supported by EU FP5 VIRDIAB Project, EU FP6 Integrated Project EURO-THYMAIDE, Nord-Pas-de-Calais region, the Ministère de l'Education Nationale, de la Recherche et de la Technologie, the Université Lille 2, CHRU Lille, the Comité Mixte franco-tunisien de Coopération Universitaire.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Hober.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hober, D., Sauter, P. Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host. Nat Rev Endocrinol 6, 279–289 (2010). https://doi.org/10.1038/nrendo.2010.27

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2010.27

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing