Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Utility of genetic determinants of lipids and cardiovascular events in assessing risk

Abstract

The prevention of coronary heart disease (CHD) is a major public-health goal, but disease architecture is such that a larger proportion of clinical events occur among the average majority than among the high-risk minority—the prevention paradox. Genetic findings over the past few years have resulted in the reopening of the old debate on whether an individualized or a population-based approach to prevention is preferable. Genetic testing is an attractive tool for CHD risk prediction because it is a low-cost, high-fidelity technology with multiplex capability. Moreover, by contrast with nongenetic markers, genotype is invariant and determined from conception, which eliminates biological variability and makes prediction from early life possible. Mindful of the prevention paradox, this Review examines the potential applications and challenges of using genetic information for predicting CHD, focusing on lipid risk factors and drawing on experience in the evaluation of nongenetic risk factors as screening tests for CHD. Many of the issues we discuss hold true for any late-onset common disease with modifiable risk factors and proven preventative strategies.

Key Points

  • In the past 5 years, the technique of genome-wide association analysis has begun to uncover numerous regions of the genome containing variants that influence blood-lipid levels and risk of coronary heart disease (CHD)

  • Common identified single nucleotide polymorphisms associated with CHD are dispersed across different chromosomes, have modest influence on disease risk, are additive in effect, and explain a small proportion of the observed heritability

  • Challenges in using this type of genetic information to predict individual risk of CHD exist

  • Genome-wide association studies are beginning to provide invaluable new information on causal pathways, which should inform and accelerate the design and development of new treatments

  • Emerging technological advances, including rapid, cost-effective sequencing of whole genomes, are set to further advance understanding of human disease, with prospect of developing better diagnostics and therapies

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scenarios for genetic screening of a population in which the hypothetical lifetime risk of CHD is 50%.
Figure 2: Relationship between cholesterol level and CHD risk in the general population.
Figure 3: Depiction of the frequency distribution of carriage of the number of alleles conferring susceptibility to CHD.

Similar content being viewed by others

References

  1. Morrison, A. C. et al. Prediction of coronary heart disease risk using a genetic risk score: the Atherosclerosis Risk in Communities Study. Am. J. Epidemiol. 166, 28–35 (2007).

    PubMed  Google Scholar 

  2. Paynter, N. P. et al. Cardiovascular disease risk prediction with and without knowledge of genetic variation at chromosome 9p21.3. Ann. Intern. Med. 150, 65–72 (2009).

    PubMed  PubMed Central  Google Scholar 

  3. Kathiresan, S. et al. Polymorphisms associated with cholesterol and risk of cardiovascular events. N. Engl. J. Med. 358, 1240–1249 (2008).

    CAS  PubMed  Google Scholar 

  4. Talmud, P. J. et al. Chromosome 9p21.3 coronary heart disease locus genotype and prospective risk of CHD in healthy middle-aged men. Clin. Chem. 54, 467–474 (2008).

    CAS  PubMed  Google Scholar 

  5. Paynter, N. P. et al. Association between a literature-based genetic risk score and cardiovascular events in women. JAMA 303, 631–637 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Rosenberg, S. et al. Multicenter validation of the diagnostic accuracy of a blood-based gene expression test for assessing obstructive coronary artery disease in nondiabetic patients. Ann. Intern. Med. 153, 425–434 (2010).

    PubMed  PubMed Central  Google Scholar 

  7. Ripatti, S. et al. A multilocus genetic risk score for coronary heart disease: case-control and prospective cohort analyses. Lancet 376, 1393–1400 (2010).

    PubMed  PubMed Central  Google Scholar 

  8. Thaler, R. H. Anomalies. The winner's curse. J. Econ. Perspect. 2, 191–202 (1988).

    Google Scholar 

  9. Qiu, J. & Hayden, E. C. Genomics sizes up. Nature 451, 234 (2008).

    CAS  PubMed  Google Scholar 

  10. Lloyd-Jones, D. et al. Heart disease and stroke statistics—2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119, 480–486 (2009).

    PubMed  Google Scholar 

  11. Lloyd-Jones, D. M., Larson, M. G., Beiser, A. & Levy, D. Lifetime risk of developing coronary heart disease. Lancet 353, 89–92 (1999).

    CAS  PubMed  Google Scholar 

  12. Strong, J. P. et al. Prevalence and extent of atherosclerosis in adolescents and young adults: implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study. JAMA 281, 727–735 (1999).

    CAS  PubMed  Google Scholar 

  13. Ross, R. & Glomset, J. A. The pathogenesis of atherosclerosis. N. Engl. J. Med. 295, 369–377 (1976).

    CAS  PubMed  Google Scholar 

  14. Jones, E. S. & Tobertson, P. W. Coronary artery disease, hypertension, and hypercholesteraemic xanthomatosis. Br. Med. J. 1, 1137 (1948).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Dawber, T. R., Moore, F. E. & Mann, G. V. Coronary heart disease in the Framingham study. Am. J. Public Health Nations Health 47, 4–24 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chapman, J. M., Goerke, L. S., Dixon, W., Loveland, D. B. & Phillips, E. Measuring the risk of coronary heart disease in adult population groups. The clinical status of a population group in Los Angeles under observation for two to three years. Am. J. Public Health Nations Health 47, 33–42 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Dawber, T. R., Meadors, G. F. & Moore, F. E. Jr. Epidemiological approaches to heart disease: the Framingham Study. Am. J. Public Health Nations Health 41, 279–281 (1951).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Doyle, J. T., Heslin, A. S., Hilleboe, H. E., Formel, P. F. & Korns, R. F. A prospective study of degenerative cardiovascular disease in Albany: report of three years' experience. I. Ischemic heart disease. Am. J. Public Health Nations Health 47, 25–32 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Keys, A. et al. Coronary heart disease among Minnesota business and professional men followed fifteen years. Circulation 28, 381–395 (1963).

    CAS  PubMed  Google Scholar 

  20. Kannel, W. B., Castelli, W. P., Gordon, T. & McNamara, P. M. Serum cholesterol, lipoproteins, and the risk of coronary heart disease. The Framingham study. Ann. Intern. Med. 74, 1–12 (1971).

    CAS  PubMed  Google Scholar 

  21. Wilson, P. W. et al. Prediction of coronary heart disease using risk factor categories. Circulation 97, 1837–1847 (1998).

    CAS  PubMed  Google Scholar 

  22. Hopkins, P. N. & Williams, R. R. A survey of 246 suggested coronary risk factors. Atherosclerosis 40, 1–52 (1981).

    CAS  PubMed  Google Scholar 

  23. Collins, R. et al. Blood pressure, stroke, and coronary heart disease. Part 2, Short-term reductions in blood pressure: overview of randomised drug trials in their epidemiological context. Lancet 335, 827–838 (1990).

    CAS  PubMed  Google Scholar 

  24. [No authors listed] Randomised trial of cholesterol lowering in 4,444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 344, 1383–1389 (1994).

  25. Sacks, F. M. et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N. Engl. J. Med. 335, 1001–1009 (1996).

    CAS  PubMed  Google Scholar 

  26. Shepherd, J. et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N. Engl. J. Med. 333, 1301–1307 (1995).

    CAS  PubMed  Google Scholar 

  27. Baigent, C. et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366, 1267–1278 (2005).

    CAS  PubMed  Google Scholar 

  28. Rose, G. Sick individuals and sick populations. Int. J. Epidemiol. 14, 32–38 (1985).

    CAS  PubMed  Google Scholar 

  29. Law, M. R. & Wald, N. J. Risk factor thresholds: their existence under scrutiny. BMJ 324, 1570–1576 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Law, M. R., Wald, N. J. & Morris, J. K. The performance of blood pressure and other cardiovascular risk factors as screening tests for ischaemic heart disease and stroke. J. Med. Screen. 11, 3–7 (2004).

    CAS  PubMed  Google Scholar 

  31. Rose, G. Strategy of prevention: lessons from cardiovascular disease. Br. Med. J. (Clin. Res. Ed.) 282, 1847–1851 (1981).

    CAS  Google Scholar 

  32. Wald, N. J., Hackshaw, A. K. & Frost, C. D. When can a risk factor be used as a worthwhile screening test? BMJ 319, 1562–1565 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Law, M. R., Morris, J. K. & Wald, N. J. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ 338, b1665 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Shah, T. et al. Critical appraisal of CRP measurement for the prediction of coronary heart disease events: new data and systematic review of 31 prospective cohorts. Int. J. Epidemiol. 38, 217–231 (2009).

    PubMed  Google Scholar 

  35. Hingorani, A. D., Shah, T., Casas, J. P., Humphries, S. E. & Talmud, P. J. C-reactive protein and coronary heart disease: predictive test or therapeutic target? Clin. Chem. 55, 239–255 (2009).

    CAS  PubMed  Google Scholar 

  36. Pietinen, P., Vartiainen, E., Seppanen, R., Aro, A. & Puska, P. Changes in diet in Finland from 1972 to 1992: impact on coronary heart disease risk. Prev. Med. 25, 243–250 (1996).

    CAS  PubMed  Google Scholar 

  37. Pearson, T. A. The epidemiologic basis for population-wide cholesterol reduction in the primary prevention of coronary artery disease. Am. J. Cardiol. 94, 4F–8F (2004).

    PubMed  Google Scholar 

  38. National Institute for Health and Clinical Excellence. Prevention of cardiovascular disease at the population level: Public health guidance PH25 [online], http://www.nice.org.uk/PH25 (2010).

  39. Olsson, A. G., Mölgaard, J. & von Schenk, H. Synvinolin in hypercholesterolaemia. Lancet 2, 390–391 (1986).

    CAS  PubMed  Google Scholar 

  40. National Institute for Health and Clinical Excellence. Statins for the prevention of cardiovascular events [online], http://www.nice.org.uk/nicemedia/pdf/TA094guidance.pdf (2008).

  41. Graham, I. et al. European guidelines on cardiovascular disease prevention in clinical practice: executive summary. Eur. Heart J. 28, 2375–2414 (2007).

    PubMed  Google Scholar 

  42. Pearson, T. A. et al. AHA Guidelines for Primary Prevention of Cardiovascular Disease and Stroke: 2002 Update: Consensus Panel Guide to Comprehensive Risk Reduction for Adult Patients Without Coronary or Other Atherosclerotic Vascular Diseases. American Heart Association Science Advisory and Coordinating Committee. Circulation 106, 388–391 (2002).

    PubMed  Google Scholar 

  43. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 285, 2486–2497 (2001).

  44. Assmann, G., Cullen, P. & Schulte, H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Münster (PROCAM) study. Circulation 105, 310–315 (2002).

    PubMed  Google Scholar 

  45. Roques, F. et al. Risk factors and outcome in European cardiac surgery: analysis of the EuroSCORE multinational database of 19,030 patients. Eur. J. Cardiothorac. Surg. 15, 816–822 (1999).

    CAS  PubMed  Google Scholar 

  46. Collins, G. S. & Altman, D. G. An independent external validation and evaluation of QRISK cardiovascular risk prediction: a prospective open cohort study. BMJ 339, b2584 (2009).

    PubMed  PubMed Central  Google Scholar 

  47. Ridker, P. M., Buring, J. E., Rifai, N. & Cook, N. R. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. JAMA 297, 611–619 (2007).

    CAS  PubMed  Google Scholar 

  48. Wald, N. J., Morris, J. K. & Rish, S. The efficacy of combining several risk factors as a screening test. J. Med. Screen. 12, 197–201 (2005).

    PubMed  Google Scholar 

  49. Ioannidis, J. P., Ntzani, E. E., Trikalinos, T. A. & Contopoulos-Ioannidis, D. G. Replication validity of genetic association studies. Nat. Genet. 29, 306–309 (2001).

    CAS  PubMed  Google Scholar 

  50. Hirschhorn, J. N., Lohmueller, K., Byrne, E. & Hirschhorn, K. A comprehensive review of genetic association studies. Genet. Med. 4, 45–61 (2002).

    CAS  PubMed  Google Scholar 

  51. Casas, J. P., Cooper, J., Miller, G. J., Hingorani, A. D. & Humphries, S. E. Investigating the genetic determinants of cardiovascular disease using candidate genes and meta-analysis of association studies. Ann. Hum. Genet. 70, 145–169 (2006).

    CAS  PubMed  Google Scholar 

  52. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  53. McPherson, R. et al. A common allele on chromosome 9 associated with coronary heart disease. Science 316, 1488–1491 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Helgadottir, A. et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316, 1491–1493 (2007).

    CAS  PubMed  Google Scholar 

  55. Trégouët, D. A. et al. Genome-wide haplotype association study identifies the SLC22A3-LPAL2-LPA gene cluster as a risk locus for coronary artery disease. Nat. Genet. 41, 283–285 (2009).

    PubMed  Google Scholar 

  56. Samani, N. J. et al. Genomewide association analysis of coronary artery disease. N. Engl. J. Med. 357, 443–453 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kathiresan, S. et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat. Genet. 41, 334–341 (2009).

    CAS  PubMed  Google Scholar 

  58. Erdmann, J. et al. New susceptibility locus for coronary artery disease on chromosome 3q22.3. Nat. Genet. 41, 280–282 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. CARDIoGRAM Consortium: Design of the Coronary ARtery DIsease Genome-wide Replication And Meta-Analysis (CARDIoGRAM) Study: A genome-wide association meta-analysis involving more than 22,000 cases and 60,000 controls. Circ. Cardiovasc. Genet. 3, 475–483 (2010).

  61. Waterworth, D. M. et al. Genetic variants influencing circulating lipid levels and risk of coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 30, 2264–2276 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Samani, N. J. et al. The novel genetic variant predisposing to coronary artery disease in the region of the PSRC1 and CELSR2 genes on chromosome 1 associates with serum cholesterol. J. Mol. Med. 86, 1233–1241 (2008).

    CAS  PubMed  Google Scholar 

  63. Kathiresan, S. et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat. Genet. 40, 189–197 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Holdt, L. M. et al. ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler. Thromb. Vasc. Biol. 30, 620–627 (2010).

    CAS  PubMed  Google Scholar 

  65. Manolio, T. A. Genomewide association studies and assessment of the risk of disease. N. Engl. J. Med. 363, 166–176 (2010).

    CAS  PubMed  Google Scholar 

  66. Talmud, P. J. et al. Gene-centric association signals for lipids and apolipoproteins identified via the HumanCVD BeadChip. Am. J. Hum. Genet. 85, 628–642 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Jakobsdottir, J., Gorin, M. B., Conley, Y. P., Ferrell, R. E. & Weeks, D. E. Interpretation of genetic association studies: markers with replicated highly significant odds ratios may be poor classifiers. PLoS Genet. 5, e1000337 (2009).

    PubMed  PubMed Central  Google Scholar 

  69. Kraft, P. et al. Beyond odds ratios—communicating disease risk based on genetic profiles. Nat. Rev. Genet. 10, 264–269 (2009).

    CAS  PubMed  Google Scholar 

  70. Pepe, M. S., Janes, H., Longton, G., Leisenring, W. & Newcomb, P. Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker. Am. J. Epidemiol. 159, 882–890 (2004).

    PubMed  Google Scholar 

  71. Psaty, B. M. et al. Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium: Design of prospective meta-analyses of genome-wide association studies from 5 cohorts. Circ. Cardiovasc. Genet. 2, 73–80 (2009).

    PubMed  PubMed Central  Google Scholar 

  72. Ridker, P. M. et al. Rationale, design, and methodology of the Women's Genome Health Study: a genome-wide association study of more than 25,000 initially healthy American women. Clin. Chem. 54, 249–255 (2008).

    CAS  PubMed  Google Scholar 

  73. Schunkert, H. et al. Repeated replication and a prospective meta-analysis of the association between chromosome 9p21.3 and coronary artery disease. Circulation 117, 1675–1684 (2008).

    PubMed  PubMed Central  Google Scholar 

  74. Chambers, J. C. et al. Common genetic variation near melatonin receptor MTNR1B contributes to raised plasma glucose and increased risk of type 2 diabetes among Indian Asians and European Caucasians. Diabetes 58, 2703–2708 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, K. et al. Interpretation of association signals and identification of causal variants from genome-wide association studies. Am. J. Hum. Genet. 86, 730–742 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. National Human Genome Research Institute. Human Heredity and Health in Africa Announced in London [online], http://www.genome.gov/27539880 (2010).

  77. International HapMap Project [online], http://www.hapmap.org (2010).

  78. Altshuler, D., Daly, M. J. & Lander, E. S. Genetic mapping in human disease. Science 322, 881–888 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Clayton, D. G. Prediction and interaction in complex disease genetics: experience in type 1 diabetes. PLoS Genet. 5, e1000540 (2009).

    PubMed  PubMed Central  Google Scholar 

  80. Bodmer, W. & Bonilla, C. Common and rare variants in multifactorial susceptibility to common diseases. Nat. Genet. 40, 695–701 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Gorlov, I. P., Gorlova, O. Y., Sunyaev, S. R., Spitz, M. R. & Amos, C. I. Shifting paradigm of association studies: value of rare single-nucleotide polymorphisms. Am. J. Hum. Genet. 82, 100–112 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Marenberg, M. E., Risch, N., Berkman, L. F., Floderus, B. & de Faire, U. Genetic susceptibility to death from coronary heart disease in a study of twins. N. Engl. J. Med. 330, 1041–1046 (1994).

    CAS  PubMed  Google Scholar 

  83. Pharoah, P. D. et al. Polygenic susceptibility to breast cancer and implications for prevention. Nat. Genet. 31, 33–36 (2002).

    CAS  PubMed  Google Scholar 

  84. Pharoah, P. D., Antoniou, A. C., Easton, D. F. & Ponder, B. A. Polygenes, risk prediction, and targeted prevention of breast cancer. N. Engl. J. Med. 358, 2796–2803 (2008).

    CAS  PubMed  Google Scholar 

  85. Wray, N. R., Yang, J., Goddard, M. E. & Visscher, P. M. The genetic interpretation of area under the ROC curve in genomic profiling. PLoS Genet. 6, e1000864 (2010).

    PubMed  PubMed Central  Google Scholar 

  86. Pepe, M. S., Feng, Z. & Gu, J. W. Comments on 'Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond' by M. J. Pencina. et al., Statistics in Medicine (DOI:10.1002/sim.2929). Stat. Med. 27, 173–181 (2008).

    CAS  PubMed  Google Scholar 

  87. Janssens, A. C. et al. The impact of genotype frequencies on the clinical validity of genomic profiling for predicting common chronic diseases. Genet. Med. 9, 528–535 (2007).

    PubMed  Google Scholar 

  88. Anderson, R. G., Goldstein, J. L. & Brown, M. S. A mutation that impairs the ability of lipoprotein receptors to localise in coated pits on the cell surface of human fibroblasts. Nature 270, 695–699 (1977).

    CAS  PubMed  Google Scholar 

  89. Soria, L. F. et al. Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc. Natl. Acad. Sci. USA 86, 587–591 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Tybjaerg-Hansen, A., Steffensen, R., Meinertz, H., Schnohr, P. & Nordestgaard, B. G. Association of mutations in the apolipoprotein B gene with hypercholesterolemia and the risk of ischemic heart disease. N. Engl. J. Med. 338, 1577–1584 (1998).

    CAS  PubMed  Google Scholar 

  91. Timms, K. M. et al. A mutation in PCSK9 causing autosomal-dominant hypercholesterolemia in a Utah pedigree. Hum. Genet. 114, 349–353 (2004).

    CAS  PubMed  Google Scholar 

  92. Patterson, D. & Slack, J. Lipid abnormalities in male and female survivors of myocardial infarction and their first-degree relatives. Lancet 1, 393–399 (1972).

    CAS  PubMed  Google Scholar 

  93. [No authors listed] Mortality in treated heterozygous familial hypercholesterolaemia: implications for clinical management. Scientific Steering Committee on behalf of the Simon Broome Register Group. Atherosclerosis 142, 105–112 (1999).

  94. Neil, A. et al. Reductions in all-cause, cancer, and coronary mortality in statin-treated patients with heterozygous familial hypercholesterolaemia: a prospective registry study. Eur. Heart J. 29, 2625–2633 (2008).

    PubMed  PubMed Central  Google Scholar 

  95. Kwiterovich, P. O. Jr., Fredrickson, D. S. & Levy, R. I. Familial hypercholesterolemia (one form of familial type II hyperlipoproteinemia). A study of its biochemical, genetic and clinical presentation in childhood. J. Clin. Invest. 53, 1237–1249 (1974).

    PubMed  PubMed Central  Google Scholar 

  96. Leonard, J. V., Whitelaw, A. G., Wolff, O. H., Lloyd, J. K. & Slack, J. Diagnosing familial hypercholesterolaemia in childhood by measuring serum cholesterol. Br. Med. J. 1, 1566–1568 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Starr, B. et al. Development of sensitive and specific age- and gender-specific low-density lipoprotein cholesterol cutoffs for diagnosis of first-degree relatives with familial hypercholesterolaemia in cascade testing. Clin. Chem. Lab. Med. 46, 791–803 (2008).

    CAS  PubMed  Google Scholar 

  98. Hadfield, S. G. et al. Family tracing to identify patients with familial hypercholesterolaemia: the second audit of the Department of Health Familial Hypercholesterolaemia Cascade Testing Project. Ann. Clin. Biochem. 46, 24–32 (2009).

    CAS  PubMed  Google Scholar 

  99. Taylor, A., Patel, K., Tsedeke, J., Humphries, S. E. & Norbury, G. Mutation screening in patients for familial hypercholesterolaemia (ADH). Clin. Genet. 77, 97–99 (2010).

    CAS  PubMed  Google Scholar 

  100. Wierzbicki, A. S., Humphries, S. E. & Minhas, R. Familial hypercholesterolaemia: summary of NICE guidance. BMJ 337, a1095 (2008).

    PubMed  Google Scholar 

  101. Umans-Eckenhausen, M. A., Defesche, J. C., Sijbrands, E. J., Scheerder, R. L. & Kastelein, J. J. Review of first 5 years of screening for familial hypercholesterolaemia in the Netherlands. Lancet 357, 165–168 (2001).

    CAS  PubMed  Google Scholar 

  102. Oliva, J., Lopez-Bastida, J., Moreno, S. G., Mata, P. & Alonso, R. Cost-effectiveness analysis of a genetic screening program in the close relatives of Spanish patients with familial hypercholesterolemia [Spanish]. Rev. Esp. Cardiol. 62, 57–65 (2009).

    PubMed  Google Scholar 

  103. Pocovi, M., Civeira, F., Alonso, R. & Mata, P. Familial hypercholesterolemia in Spain: case-finding program, clinical and genetic aspects. Semin. Vasc. Med. 4, 67–74 (2004).

    PubMed  Google Scholar 

  104. Ng, S. B. et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461, 272–276 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wald, D. S., Bestwick, J. P. & Wald, N. J. Child-parent screening for familial hypercholesterolaemia: screening strategy based on a meta-analysis. BMJ 335, 599 (2007).

    PubMed  PubMed Central  Google Scholar 

  106. Johansen, C. T. et al. Excess of rare variants in genes identified by genome-wide association study of hypertriglyceridemia. Nat. Genet. 42, 684–687 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 1000 Genomes [online], http://www.1000genomes.org (2010).

  108. Wellcome Trust Sanger Institute. UK10K [online], http://www.uk10k.org (2010).

  109. Genomes Project Consortium. et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

  110. Caroline, F. W., Philippa, B., Alison, S. & Hilary, B. Realising the benefits of genetics for health. Lancet 376, 1370–1371 (2010).

    Google Scholar 

  111. Structural Genomics Consortium [online], http://www.thesgc.org (2010).

  112. Wolfberg, A. J. Genes on the Web--direct-to-consumer marketing of genetic testing. N. Engl. J. Med. 355, 543–545 (2006).

    CAS  PubMed  Google Scholar 

  113. Genetics and Public Policy Center. Direct-to-consumer genetic testing: empowering or endagering the public? [online], http://www.dnapolicy.org/images/issuebriefpdfs/2006_DTC_Issue_Brief.pdf (2008).

  114. American College of Medicine Genetics Board of Directors. ACMG statement on direct-to-consumer genetic testing. Genet. Med. 6, 60 (2004).

  115. Gollust, S. E., Hull, S. C. & Wilfond, B. S. Limitations of direct-to-consumer advertising for clinical genetic testing. JAMA 288, 1762–1767 (2002).

    PubMed  Google Scholar 

  116. Hudson, K., Javitt, G., Burke, W. & Byers, P. ASHG Statement* on direct-to-consumer genetic testing in the United States. Obstet. Gynecol. 110, 1392–1395 (2007).

    PubMed  Google Scholar 

  117. National Human Genome Research Institute. Direct to consumer marketing of genetic tests [online], http://www.genome.gov/12010659 (2004).

  118. Genetic Alliance. Promotion of genetic testing services directly to consumers [online], http://www.geneticalliance.org/ws_display.asp?filter=policy.tmarket (2010).

  119. Shuren, J. Direct-to-consumer genetic testing and the consequences to the public. US Department of Health and Human Services [online], http://www.fda.gov/NewsEvents/Testimony/ucm219925.htm (2010).

  120. Evans, J. P., Dale, D. C. & Fomous, C. Preparing for a consumer-driven genomic age. N. Engl. J. Med. 363, 1099–1103 (2010).

    CAS  PubMed  Google Scholar 

  121. Annes, J. P., Giovanni, M. A. & Murray, M. F. Risks of presymptomatic direct-to-consumer genetic testing. N. Engl. J. Med. 363, 1100–1101 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Kuehn, B. M. Inconsistent results, inaccurate claims plague direct-to-consumer gene tests. JAMA 301, 1313–1315 (2010).

    Google Scholar 

  123. Humphries, S. E., Yiannakouris, N. & Talmud, P. J. Cardiovascular disease risk prediction using genetic information (gene scores): is it really informative? Curr. Opin. Lipidol. 19, 128–132 (2008).

    CAS  PubMed  Google Scholar 

  124. House of Lords. Science and Technology Committee—Second Report: Genomic Medicine [online], http://www.publications.parliament.uk/pa/ld200809/ldselect/ldsctech/107/10702.htm (2009).

  125. Wald, N. J. & Law, M. R. A strategy to reduce cardiovascular disease by more than 80%. BMJ 326, 1419 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Yusuf, S. et al. Effects of a polypill (Polycap) on risk factors in middle-aged individuals without cardiovascular disease (TIPS): a phase II, double-blind, randomised trial. Lancet 373, 1341–1351 (2009).

    CAS  PubMed  Google Scholar 

  127. Wald, N. J. & Wald, D. S. The polypill concept. Heart 96, 1–4 (2010).

    PubMed  Google Scholar 

  128. Hlatky, M. A. et al. Criteria for evaluation of novel markers of cardiovascular risk: a scientific statement from the American Heart Association. Circulation 119, 2408–2416 (2009).

    PubMed  PubMed Central  Google Scholar 

  129. Hindorff, L. A., Junkins, H. A., Hall, P. N., Mehta, J. P. & Manolio, T. A. A Catalog of Published Genome-Wide Association Studies. Available at: http://www.genome.gov/gwastudies. Accessed 22nd October 2010.

    Google Scholar 

  130. Abifadel, M. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34, 154–156 (2003).

    CAS  PubMed  Google Scholar 

  131. Willer, C. J. et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat. Genet. 40, 161–169 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kathiresan, S. et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat. Genet. 41, 56–65 (2009).

    CAS  PubMed  Google Scholar 

  133. Romeo, S. et al. Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans. J. Clin. Invest. 119, 70–79 (2009).

    CAS  PubMed  Google Scholar 

  134. Innerarity, T. L. et al. Familial defective apolipoprotein B-100: low density lipoproteins with abnormal receptor binding. Proc. Natl. Acad. Sci. USA 84, 6919–6923 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Sandhu, M. S. et al. LDL-cholesterol concentrations: a genome-wide association study. Lancet 371, 483–491 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Sabatti, C. et al. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat. Genet. 41, 35–46 (2009).

    CAS  PubMed  Google Scholar 

  137. Aulchenko, Y. S. et al. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat. Genet. 41, 47–55 (2009).

    CAS  PubMed  Google Scholar 

  138. Burkhardt, R. et al. Common SNPs in HMGCR in micronesians and whites associated with LDL-cholesterol levels affect alternative splicing of exon13. Arterioscler. Thromb. Vasc. Biol. 28, 2078–2084 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Dahlen, G. & Berg, K. Further evidence for the existence of genetically determined metabolic differences between Lp(a+) and Lp(a-) individuals. Clin. Genet. 9, 357–364 (1976).

    CAS  PubMed  Google Scholar 

  140. Wittrup, H. H. et al. A common substitution (Asn291Ser) in lipoprotein lipase is associated with increased risk of ischemic heart disease. J. Clin. Invest. 99, 1606–1613 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Heid, I. M. et al. Genome-wide association analysis of high-density lipoprotein cholesterol in the population-based KORA study sheds new light on intergenic regions. Circ. Cardiovasc. Genet. 1, 10–20 (2008).

    CAS  PubMed  Google Scholar 

  142. Brooks-Wilson, A. et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat. Genet. 22, 336–345 (1999).

    CAS  PubMed  Google Scholar 

  143. Schaeffer, L. et al. Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Hum. Mol. Genet. 15, 1745–1756 (2006).

    CAS  PubMed  Google Scholar 

  144. Karathanasis, S. K., McPherson, J., Zannis, V. I. & Breslow, J. L. Linkage of human apolipoproteins A-I and C-III genes. Nature 304, 371–373 (1983).

    CAS  PubMed  Google Scholar 

  145. Yamakawa-Kobayashi, K. et al. Frequent occurrence of hypoalphalipoproteinemia due to mutant apolipoprotein A-I gene in the population: a population-based survey. Hum. Mol. Genet. 8, 331–336 (1999).

    CAS  PubMed  Google Scholar 

  146. Babaya, N. et al. Association of I27L polymorphism of hepatocyte nuclear factor-1 alpha gene with high-density lipoprotein cholesterol level. J. Clin. Endocrinol. Metab. 88, 2548–2551 (2003).

    CAS  PubMed  Google Scholar 

  147. Fang, D. Z. & Liu, B. W. Polymorphism of HL +1075C, but not -480T, is associated with plasma high density lipoprotein cholesterol and apolipoprotein AI in men of a Chinese population. Atherosclerosis 161, 417–424 (2002).

    CAS  PubMed  Google Scholar 

  148. Kuivenhoven, J. A. et al. The role of a common variant of the cholesteryl ester transfer protein gene in the progression of coronary atherosclerosis. The Regression Growth Evaluation Statin Study Group. N. Engl. J. Med. 338, 86–93 (1998).

    CAS  PubMed  Google Scholar 

  149. Igl, W. et al. Modeling of environmental effects in genome-wide association studies identifies SLC2A2 and HP as novel loci influencing serum cholesterol levels. PLoS Genet. 6, e1000798 (2010).

    PubMed  PubMed Central  Google Scholar 

  150. Ridker, P. M. et al. Polymorphism in the CETP gene region, HDL cholesterol, and risk of future myocardial infarction: Genomewide analysis among 18,245 initially healthy women from the Women's Genome Health Study. Circ. Cardiovasc. Genet. 2, 26–33 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Bujo, H. et al. Molecular defect in familial lecithin:cholesterol acyltransferase (LCAT) deficiency: a single nucleotide insertion in LCAT gene causes a complete deficient type of the disease. Biochem. Biophys. Res. Commun. 181, 933–940 (1991).

    CAS  PubMed  Google Scholar 

  152. Yamakawa-Kobayashi, K., Yanagi, H., Endo, K., Arinami, T. & Hamaguchi, H. Relationship between serum HDL-C levels and common genetic variants of the endothelial lipase gene in Japanese school-aged children. Hum. Genet. 113, 311–315 (2003).

    CAS  PubMed  Google Scholar 

  153. Hobbs, H. H., Brown, M. S., Russell, D. W., Davignon, J. & Goldstein, J. L. Deletion in the gene for the low-density-lipoprotein receptor in a majority of French Canadians with familial hypercholesterolemia. N. Engl. J. Med. 317, 734–737 (1987).

    CAS  PubMed  Google Scholar 

  154. Breslow, J. L. et al. Studies of familial type III hyperlipoproteinemia using as a genetic marker the apoE phenotype E2/2. J. Lipid Res. 23, 1224–1235 (1982).

    CAS  PubMed  Google Scholar 

  155. Aouizerat, B. E. et al. Genetic variation of PLTP modulates lipoprotein profiles in hypoalphalipoproteinemia. J. Lipid Res. 47, 787–793 (2006).

    CAS  PubMed  Google Scholar 

  156. Linsel-Nitschke, P. et al. Genetic variation at chromosome 1p13.3 affects sortilin mRNA expression, cellular LDL-uptake and serum LDL levels which translates to the risk of coronary artery disease. Atherosclerosis 208, 183–189 (2010).

    CAS  PubMed  Google Scholar 

  157. Musunuru, K. et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature 466, 714–719 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Saxena, R. et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316, 1331–1336 (2007).

    CAS  PubMed  Google Scholar 

  159. O'Doherty, R. M., Lehman, D. L., Telemaque-Potts, S. & Newgard, C. B. Metabolic impact of glucokinase overexpression in liver: lowering of blood glucose in fed rats is accompanied by hyperlipidemia. Diabetes 48, 2022–2027 (1999).

    CAS  PubMed  Google Scholar 

  160. Slosberg, E. D. et al. Treatment of type 2 diabetes by adenoviral-mediated overexpression of the glucokinase regulatory protein. Diabetes 50, 1813–1820 (2001).

    CAS  PubMed  Google Scholar 

  161. Gretarsdottir, S. et al. Genome-wide association study identifies a sequence variant within the DAB2IP gene conferring susceptibility to abdominal aortic aneurysm. Nat. Genet. 42, 692–697 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Fujita, P. A. et al. The UCSC Genome Browser database: update 2011. Nucleic Acids Res. doi:10.1093/nar/gkq963.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A. D. Hingorani and S. E. Humphries contributed equally to this article. M. V. Holmes is funded by a Population Health Scientist Fellowship from the Medical Research Council (G0802432). The British Heart Foundation supports P. J Talmud (RG/08/008), A. D. Hingorani (FS 05/125), and S. E Humphries (PG/07/133/24,260). This work was undertaken at UCLH/UCL, which received a proportion of funding from the Department of Health's NIHR Biomedical Research Centers funding scheme.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to discussion of content for the article, researched data to include in the manuscript, reviewed and edited the manuscript before submission, and revised the manuscript in response to the peer-reviewers' comments. M. V. Holmes, S. Harrison, A. D. Hingorani and S. E Humphries were also involved in writing the manuscript.

Corresponding authors

Correspondence to Aroon D. Hingorani or Steve E. Humphries.

Ethics declarations

Competing interests

A. Hingorani is a member of the Editorial Board of the Drug and Therapeutics Bulletin (International Society of Drug Bulletins). He has acted as a consultant to London Genetics and to GlaxoSmithKline. He has received honoraria for speaking at educational meetings but has donated these in large part to various medical charities. The other authors declare no competing interests.

Supplementary information

Supplementary Table 1

Loci and genes for lipids, HDL-C, LDL-C and cholesterol identified by genome wide association studies to date (DOC 533 kb)

Supplementary Table 2

Loci and genes for myocardial infarction and/or coronary artery disease identified by genome wide association studies to date (DOC 79 kb)

Supplementary Box 1

Tools for assessing predictive utility of gene markers (DOC 40 kb)

Supplementary Information

Derivation of values for Table 7 (DOC 43 kb)

Supplementary Glossary of terms (DOC 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmes, M., Harrison, S., Talmud, P. et al. Utility of genetic determinants of lipids and cardiovascular events in assessing risk. Nat Rev Cardiol 8, 207–221 (2011). https://doi.org/10.1038/nrcardio.2011.6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2011.6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing