Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Porphobilinogen deaminase deficiency in mice causes a neuropathy resembling that of human hepatic porphyria

Abstract

Acute Intermittent porphyria (AIP) is a human disease resulting from a dominantly inherited partial deficiency of the heme biosynthetic enzyme, porphobilinogen deaminase (PBGD)1–3. The frequency of the trait for AIP is 1/10,000 in most populations, but may be markedly higher (1/500) in psychiatric patients1,4. The clinical expression of the disease is characterized by acute, life-threatening attacks of ‘porphyric neuropathy’ that include abdominal pain, motor and sensory neurological deficits and psychiatric symptoms1. Attacks are frequently precipitated by drugs, alcohol and low caloric intake. Identical symptoms occur in other hepatic porphyrias. To study the pathogenesis of the neurologic symptoms of AIP we have generated Pbgd-deficient mice by gene targeting. These mice exhibit the typical biochemical characteristics of human AIP, notably, decreased hepatic Pbgd activity, increased δ-aminolevulinic acid synthase activity and massively increased urinary excretion of the heme precursor, δ-aminolevulinic acid after treatment with drugs such as phenobarbital. Behavioural tests reveal decreased motor function and-histo-pathological findings include axonal neuropathy and neurologic muscle atrophy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kappas, A., Sassa, S., Galbraith, R.A. & Nordmann, Y. The porphyrias. In The Metabolic Basis of Inherited Disease (eds Scriver, C. et al) 1305–1365 (New York, McGraw-Hill, 1989).

    Google Scholar 

  2. Elder, G.H. Molecular genetics of disorders of haem biosynthesis. J. Clin. Pathol. 46, 977–981 (1993).

    Article  CAS  Google Scholar 

  3. Bonkovsky, H.L. Advances in understanding and treating ‘the little imitator’, acute porphyria. Gastroenterology. 105, 590–594 (1993).

    Article  CAS  Google Scholar 

  4. Tishler, P.V. et al. High prevalence of acute intermittent porphyria in a psychiatric patient population. Am. J. Psychiat. 142, 1430–1436 (1985).

    Article  CAS  Google Scholar 

  5. Ledermann, B. & Bürki, K. Establishment of a germ-line competent 0576176 embryonic stem cell line. Exp. Cell Res. 197, 254–258 (1991).

    Article  CAS  Google Scholar 

  6. Grandchamp, B. et al. Tissue-specific expression of porphobilinogen deaminase. Two isoenzymes from a single gene. Eur. J. Biochem. 162, 105–110 (1987).

    Article  CAS  Google Scholar 

  7. Beaumont, C., Porcher, C., Picat, C., Nordmann, Y. & Grandchamp, B. The mouse porphobilinogen deaminase gene. Structural organization, sequence and transcriptional analysis. J. Biol. Chem. 264, 14829–14834 (1989).

    CAS  PubMed  Google Scholar 

  8. Johnson, P. & Friedmann, T. Limited bidirectional activity of two housekeeping gene promoters: human HPRT and PGK. Gene 88, 207–213 (1990).

    Article  CAS  Google Scholar 

  9. Eales, L. & Dowdle, E.B. The acute porphyric attack I. The electrolyte disorder of the acute porphyric attack and the possible role of delta-aminolevulinic acid. S. Afr. J. Lab. Clin. Med. 17, 89–97 (1971).

    Google Scholar 

  10. Andersson, C. & Lithner, F. Hypertension and renal disease in patients with acute intermittent porphyria. J. Int. Med. 236, 169–175 (1994).

    Article  CAS  Google Scholar 

  11. Cavanagh, J.B. & Mellick, R.S. On the nature of the peripheral nerve lesions associated with acute intermittent porphyria. J. Neurol. Neurosurg. Psychiat. 28, 320–327 (1965).

    Article  CAS  Google Scholar 

  12. Hruska, R.E., Kennedy, S. & Silbergeld, E.K. Quantitative aspects of normal locomotion in rats. Life Sci. 25, 171–180 (1979).

    Article  CAS  Google Scholar 

  13. Medinaceli, L., Freed, W.J. & Wyatt, R.J. An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks. Expl. Neurol. 77, 634–643 (1982).

    Article  Google Scholar 

  14. Albers, J.W., Robertson, W.C. & Daube, J.R. Electrodiagnostic findings in acute porphyric neuropathy. Muscle Nerve. 1, 292–296 (1978).

    Article  CAS  Google Scholar 

  15. Bonkowsky, H.L. & Schady, W., Manifestations of Acute Porphyria in Seminar Liver Dis. 2, 108–124 (1982).

    Article  CAS  Google Scholar 

  16. Müller, W.E. & Snyder, S.H. δ-Aminolevulinic acid: influences on synaptic GABA receptor binding may explain CNS symptoms of porphyria. Ann. Neurol. 2, 340–342 (1977).

    Article  Google Scholar 

  17. Brennan, M.J.W. & Cantrill, R.C. δ-Aminolaevulinic acid is a potent agonist for GABA autoreceptor. Nature 280, 514–515 (1979).

    Article  CAS  Google Scholar 

  18. Litman, D.A. & Correia, M.A. L-Tryptophan: a common denominator of biochemical and neurological events of acute hepatic porphyria. Science 222, 1031–1033 (1983).

    Article  CAS  Google Scholar 

  19. Nordmann, Y., de Verneuil, H., Deybach, J.-C., Delfau, M.-H., & Grandchamp, B. Molecular genetics of porphyrias. Ann. Med. 22, 387–391 (1990).

    Article  CAS  Google Scholar 

  20. Louie, G.V. et al. Structure of porphobilinogen deaminase reveals a flexible multidomain polymerase with a single catalytic site. Nature 359, 33–39 (1992).

    Article  CAS  Google Scholar 

  21. Brownlie, P.D. et al. The three-dimensional structures of mutants of porphobilinogen deaminase: Toward an understanding of the structural basis of acute intermittent porphyria. Protein Sci. 3, 1644–1650 (1994).

    Article  CAS  Google Scholar 

  22. Chen, C.-H., Astrin, K.H., Lee, G., Anderson, K.E. & Desnick, R.J. Acute intermittent porphyria: identification and expression of exonic mutations in the hydroxymethylbilane synthase gene. J. Clin. Invest. 94, 1927–1937 (1994).

    Article  CAS  Google Scholar 

  23. Meyer, U.A., Strand, L.J., Doss, M., Rees, A.C. & Marver, H.S. Intermittent acute porphyria: demostration of a genetic defect in porphobilinogen metabolism. N. Engl. J. Med. 286, 1277–1282 (1972).

    Article  CAS  Google Scholar 

  24. Poland, A. & Glover, E. 2,3,7,8-Tetrachlorodibenzo-p-dioxin: a potent inducer of aminolevulinic acid synthetase.Science 179, 476–477 (1972).

    Article  Google Scholar 

  25. Tomokuni, K., Ichiba, M., Hirai, Y. & Hasegawa, T. Optimized liquid-chromatographic method for fluorometric determination of urinary 8-aminolevulinic acid in workers exposed to lead. Clin. Chem. 33, 1665–1667 (1987).

    CAS  PubMed  Google Scholar 

  26. Bielchowsky, M., Silber-lmprägnation der Neurofibrillen. J. Psychol. Neurol. 3, 169–188 (1904).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindberg, R., Porcher, C., Grandchamp, B. et al. Porphobilinogen deaminase deficiency in mice causes a neuropathy resembling that of human hepatic porphyria. Nat Genet 12, 195–199 (1996). https://doi.org/10.1038/ng0296-195

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0296-195

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing