Skip to main content
Log in

Modified Low Density Lipoproteins Decrease the Activity and Expression of Lysosomal Acid Lipase in Human Endothelial and Smooth Muscle Cells

Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Lysosomal acid lipase (LAL), the only lysosomal enzyme involved in the hydrolysis of LDL-cholesteryl esters, is a key regulator of cellular cholesterol and fatty acid homeostasis and its deficiency contributes to the pathophysiology of various diseases. In this study, we questioned whether oxidized or glycated LDL, a common occurrence in atherosclerosis and diabetes, affect the activity and expression of LAL in vascular endothelial cells (EC) and smooth muscle cells (SMC). LAL activity and expression were assayed in cultured human EC and SMC exposed to oxidized LDL (oxLDL), (±)9-hydroxyoctadecadienoic acid-cholesteryl ester (HODE), glycated LDL (gLDL), or native LDL (nLDL) as control, in the presence or absence of LXR or PPAR-gamma agonists. We found that LAL activity and expression were significantly down regulated by oxLDL and HODE in EC, and by gLDL in SMC. The LXR agonist T0901317 reversed the decreased LAL expression in modified LDL- or HODE-exposed EC (P < 0.001) and in gLDL-exposed SMC, whereas PPAR-gamma agonist rosiglitazone induced a low effect only in EC. In conclusion, modified LDL down regulates LAL expression in human EC and SMC by a process involving the LXR signaling pathway. This is the first demonstration that modified LDL modulate LAL expression, in a cell specific manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Moore, K. J., & Freeman, M. W. (2006). Scavenger receptors in atherosclerosis: Beyond lipid uptake. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 1702–1711.

    Article  PubMed  CAS  Google Scholar 

  2. Dhaliwal, B. S., & Steinbrecher, U. P. (2000). Cholesterol delivered to macrophages by oxidized low density lipoprotein is sequestered in lysosomes and fails to efflux normally. Journal of Lipid Research, 41, 1685–1686.

    Google Scholar 

  3. Simionescu, M., Popov, D., Sima, A., Hasu, M., Costache, G., Faitar, S., et al. (1996). Pathobiochemistry of combined diabetes and atherosclerosis studied on a novel animal model. The hyperlipemic-hyperglycemic hamster. American Journal of Pathology, 148, 997–1014.

    PubMed  CAS  Google Scholar 

  4. Lusis, A. J. (2000). Atherosclerosis. Nature, 407, 233–241.

    Article  PubMed  CAS  Google Scholar 

  5. Nagy, L., Tontonoz, P., Alvarez, J. G., Chen, H., & Evans, R. M. (1998). Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell, 93, 229–240.

    Article  PubMed  CAS  Google Scholar 

  6. Simionescu, M., & Antohe, F. (2006). Functional ultrastructure of the vascular endothelium: Changes in various pathologies. Handbook Experimental Pharmacology, 176(1), 41–69.

    Article  Google Scholar 

  7. Assmann, G., & Seedorf, U. (2001). In C. R. Scriver, A. L. Beaudet, & W. S. Sly et al. (Eds.), Acid lipase deficiency: Wolman disease and cholesteryl ester storage disease (8th ed, vol 3). New York: McGraw-Hill.

  8. Ravandi, A., Kuksis, A., & Shaikh, N. A. (1999). Glycated phosphatidylethanolamine promotes macrophage uptake of low density lipoprotein and accumulation of cholesteryl esters and triacylglycerols. Journal of Biological Chemistry, 274, 16494–16500.

    Article  PubMed  CAS  Google Scholar 

  9. Lougheed, M., Zhang, H. F., & Steinbrecher, U. P. (1991). Oxidized low density lipoprotein is resistant to cathepsins and accumulates within macrophages. Journal of Biological Chemistry, 266, 14519–14525.

    PubMed  CAS  Google Scholar 

  10. Lenz, M. L., Hughes, H., Mitchell, J. R., Via, D. P., Guyton, J. R., Taylor, A. A., et al. (1990). Lipid hydroperoxy and hydroxy derivatives in copper-catalyzed oxidation of low density lipoprotein. Journal of Lipid Research, 31, 1043–1050.

    PubMed  CAS  Google Scholar 

  11. Zhao, C., & Dahlman-Wright, K. (2010). Liver X receptor in cholesterol metabolism. Journal of Endocrinology, 204, 233–240.

    Article  PubMed  CAS  Google Scholar 

  12. Lian, X., Yan, C., Qin, Y., Knox, L., Li, T., & Du, H. (2005). Neutral lipids and peroxisome proliferator-activated receptor-{gamma} control pulmonary gene expression and inflammation-triggered pathogenesis in lysosomal acid lipase knockout mice. American Journal of Pathology, 167, 813–821.

    Article  PubMed  CAS  Google Scholar 

  13. Edgell, C. J. S., McDonald, C. C., & Graham, J. B. (1983). Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proceedings of the National Academy of Sciences of the United States of America, 80, 3734–3737.

    Article  PubMed  CAS  Google Scholar 

  14. Rabiet, M. J., Plantier, J. L., Rival, Y., Genoux, Y., Lampugnani, M. G., & Dejana, E. (1996). Thrombin-induced increase in endothelial permeability is associated with changes in cell-to-cell junction organization. Arteriosclerosis, Thrombosis, and Vascular Biology, 16, 488–496.

    Article  PubMed  CAS  Google Scholar 

  15. Tirziu, D., Jinga, V. V., Serban, G., & Simionescu, M. (1999). The effects of low density lipoproteins dmodified by incubation with chondroitin 6-sulfate on human aortic smooth muscle cells. Atherosclerosis, 147, 155–166.

    Article  PubMed  CAS  Google Scholar 

  16. Sima, A. V., Botez, G. M., Stancu, C. S., Manea, A., Raicu, M., & Simionescu, M. (2010). Effect of irreversibly glycated LDL in human vascular smooth muscle cells: Lipid loading, oxidative and inflammatory stress. Journal of Cellular and Molecular Medicine, 14, 2790–2802.

    Article  PubMed  CAS  Google Scholar 

  17. Gamble, W., Vaughan, M., Kruth, H. S., & Avigan, J. (1978). Procedure for determination of free and total cholesterol in micro- or nanogram amounts suitable for studies with cultured cells. Journal of Lipid Research, 19, 1068–1070.

    PubMed  CAS  Google Scholar 

  18. Kelly, S., & Bakhru-Kishore, R. (1979). Fluorimetric assay of acid lipase in human leukocytes. Clinica Chimica Acta, 97, 239–242.

    Article  CAS  Google Scholar 

  19. Buechler, C., Ullrich, H., Aslanidis, C., Bared, S. M., Lingenhel, A., Ritter, M., et al. (2003). Lipoprotein (a) downregulates lysosomal acid lipase and induces interleukin-6 in human blood monocytes. Biochimica et Biophysica Acta, 1642, 25–31.

    Article  PubMed  CAS  Google Scholar 

  20. Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, 2002–2007.

    Article  Google Scholar 

  21. Brown, M. S., Sobhani, M. K., Brunschede, G. Y., & Goldstein, J. L. (1976). Restoration of a regulatory response to low density lipoprotein in acid lipase-deficient human fibroblasts. Journal of Biological Chemistry, 251, 3277–3286.

    PubMed  CAS  Google Scholar 

  22. Goldstein, J. L., Anderson, R. G., Buja, L. M., Basu, S. K., & Brown, M. S. (1977). Overloading human aortic smooth muscle cells with low density lipoprotein-cholesteryl esters reproduces features of atherosclerosis in vitro. Journal of Clinical Investigation, 59, 1196–1202.

    Article  PubMed  CAS  Google Scholar 

  23. Hakala, J. K., Oksjoki, R., Laine, P., Du, H., Grabowski, G. A., Kovanen, P. T., et al. (2003). Lysosomal enzymes are released from cultured human macrophages, hydrolyze LDL in vitro, and are present extracellularly in human atherosclerotic lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 1430–1436.

    Article  PubMed  CAS  Google Scholar 

  24. Goldstein, J. L., Dana, S. E., Faust, J. R., Beaudet, A. L., & Brown, M. S. (1975). Role of lysosomal acid lipase in the metabolism of plasma low density lipoprotein. Observations in cultured fibroblasts from a patient with cholesteryl ester storage disease. Journal of Biological Chemistry, 250, 8487–8495.

    PubMed  CAS  Google Scholar 

  25. Maor, I., & Aviram, M. (1994). Oxidized low density lipoprotein leads to macrophage accumulation of unesterified cholesterol as a result of lysosomal trapping of the lipoprotein hydrolyzed cholesteryl ester. Journal of Lipid Research, 35, 803–819.

    PubMed  CAS  Google Scholar 

  26. Younis, N., Sharma, R., Soran, H., Charlton-Menys, V., Elseweidy, M., & Durrington, P. N. (2008). Glycation as an atherogenic modification of LDL. Current Opinion in Lipidology, 19, 378–384.

    Article  PubMed  CAS  Google Scholar 

  27. Esterbauer, H., Jurgens, G., Quehenberger, O., & Koller, E. (1987). Autoxidation of human low density lipoprotein: Loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes. Journal of Lipid Research, 28, 495–509.

    PubMed  CAS  Google Scholar 

  28. Norata, G. D., Ongari, M., Uboldi, P., Pellegatta, F., & Catapano, A. L. (2005). Liver X receptor and retinoic X receptor agonists modulate the expression of genes involved in lipid metabolism in human endothelial cells. International Journal of Molecular Medicine, 16, 717–722.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Dr. Livia Poenaru (Department of Genetics, Faculty of Medicine Cochin Port-Royal, University Rene Decartes, Paris, France) for training Alexandra Robciuc, Ph.D student in the lysosomal enzymes domain. We acknowledge the skillful assistance of Floarea Georgescu, and Ioana Manolescu. This work was supported by grants from the Romanian Academy and Romanian Ministry of Education and Research (PNII #41-067/2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantina Heltianu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heltianu, C., Robciuc, A., Botez, G. et al. Modified Low Density Lipoproteins Decrease the Activity and Expression of Lysosomal Acid Lipase in Human Endothelial and Smooth Muscle Cells. Cell Biochem Biophys 61, 209–216 (2011). https://doi.org/10.1007/s12013-011-9190-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9190-8

Keywords

Navigation