Skip to main content

Advertisement

Log in

Cannabinoids: reward, dependence, and underlying neurochemical mechanisms—a review of recent preclinical data

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Background and rationale

Starting with the discovery of an endogenous brain cannabinoid system with specific receptors and endogenous ligands, research in the cannabinoid field has accelerated dramatically over the last 15 years. Cannabis is the most used illicit psychotropic substance in the world but only recently have reliable preclinical models become available for investigating the rewarding and dependence-producing actions of its psychoactive constituent, Δ9-tetrahydrocannabinol (THC).

Objectives

The goal of this review is to examine the various animal models currently available that are being used to facilitate our understanding of the rewarding and dependence-producing actions of cannabinoids, which are central to their abuse liability, and of the neurochemical mechanisms that may underlie these actions of cannabinoids.

Results and conclusions

Recent demonstrations that strong and persistent intravenous self-administration behavior can be obtained in squirrel monkeys using a range of THC doses that are in agreement with the total intake and the single doses of THC normally self-administered by humans smoking marijuana cigarettes provides a reliable and direct tool for assessing the reinforcing effects of THC that are central to its abuse liability. In addition, recent demonstrations of persistent intravenous self-administration of synthetic cannabinoid CB1 receptor agonists by rats and mice and the development of genetically modified mice lacking specific cannabinoid receptors provide convenient rodent models for exploring underlying neurochemical mechanisms. Repeated demonstrations in rats that THC and synthetic CB1 agonists can induce conditioned place preferences or aversions, depending on details of dose and spacing, can reduce the threshold for intracranial self-stimulation behavior under certain conditions, and can serve as effective discriminative stimuli for operant behavior provide less direct, but more rapidly established, measures for investigating the rewarding effects of cannabinoids. Finally, there have been numerous recent reports of major functional interactions between endogenous cannabinoid, opioid, and dopaminergic neurotransmitter systems in areas such as analgesia, physical dependence and tolerance development, and drug reinforcement or reward. This provides an opportunity to search for drugs with the beneficial therapeutic effects of currently available cannabinoids or opioids but without undesirable adverse effects such as abuse liability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig 1A, B.
Fig. 2.
Fig. 3.
Fig. 4A–C.
Fig 5.
Fig. 6.

Similar content being viewed by others

References

  • Abood ME, Sauss C, Fan F, Tilton CL, Martin BR (1993) Development of behavioral tolerance to delta 9-THC without alteration of cannabinoid receptor binding or mRNA levels in whole brain. Pharmacol Biochem Behav 46:575–579

    Article  CAS  PubMed  Google Scholar 

  • Aceto MD, Scates SM, Lowe JA, Martin BR (1995) Cannabinoid precipitated withdrawal by the selective cannabinoid receptor antagonist, SR 141716A. Eur J Pharmacol 282:R1–R2

    Google Scholar 

  • Aceto MD, Scates SM, Lowe JA, Martin BR (1996) Dependence on delta 9-tetrahydrocannabinol: studies on precipitated and abrupt withdrawal. J Pharmacol Exp Ther 278:1290–1295

    Google Scholar 

  • Aceto MD, Scates SM, Razdan RK, Martin BR (1998) Anandamide, an endogenous cannabinoid, has a very low physical dependence potential. J Pharmacol Exp Ther 287:598–605

    CAS  PubMed  Google Scholar 

  • Aceto MD, Scates SM, Lowe JA, Martin BR (2001) Spontaneous and precipitated withdrawal with a synthetic cannabinoid, WIN 55,212-2. Eur J Pharmacol 416:75–81

    Article  CAS  PubMed  Google Scholar 

  • Acquas E, Di Chiara G (1992) Depression of mesolimbic dopamine transmission and sensitization to morphine during opiate abstinence. J Neurochem 58:1620–1625

    CAS  PubMed  Google Scholar 

  • Acquas E, Carboni E, Di Chiara G (1991) Profound depression of mesolimbic dopamine release after morphine withdrawal in dependent rats. Eur J Pharmacol 193:133–134

    CAS  PubMed  Google Scholar 

  • Agurell S, Halldin M, Lindgren JE, Ohlsson A, Widman M, Gillespie H, Hollister L (1986) Pharmacokinetics and metabolism of delta 1-tetrahydrocannabinol and other cannabinoids with emphasis on man. Pharmacol Rev 38:21–43

    CAS  PubMed  Google Scholar 

  • Ameri A (1999) The effects of cannabinoids on the brain. Prog Neurobiol 58:315–348

    Google Scholar 

  • Arnold JC, Topple AN, Hunt GE, McGregor IS (1998) Effects of pre-exposure and co-administration of the cannabinoid receptor agonist CP 55,940 on behavioral sensitization to cocaine. Eur J Pharmacol 354:9–16

    CAS  PubMed  Google Scholar 

  • Arnold JC, Hunt GE, McGregor IS (2001) Effects of the cannabinoid receptor agonist CP 55,940 and the cannabinoid receptor antagonist SR 141716 on intracranial self-stimulation in Lewis rats. Life Sci 70:97–108

    Article  CAS  PubMed  Google Scholar 

  • Balster RL, Prescott WR (1992) Delta 9-tetrahydrocannabinol discrimination in rats as a model for cannabis intoxication. Neurosci Biobehav Rev 16:55–62

    CAS  PubMed  Google Scholar 

  • Balster RL, Schuster CR (1973) Fixed-interval schedule of cocaine reinforcement: effect of dose and infusion duration. J Exp Anal Behav 20:119–29

    CAS  PubMed  Google Scholar 

  • Bardo MT, Bevins RA (2000) Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology 153:31–43

    Google Scholar 

  • Barrett RL, Wiley JL, Balster RL, Martin BR (1995) Pharmacological specificity of Δ9-tetrahydrocannabinol discrimination in rats. Psychopharmacology 118:419–424

    CAS  PubMed  Google Scholar 

  • Bass CE, Martin BR (2000) Time course for the induction and maintenance of tolerance to delta-9-tetrahydrocannabinol in mice. Drug Alcohol Depend 60:113–119

    Article  CAS  PubMed  Google Scholar 

  • Bergman J, Johnson GE (1985) The reinforcing properties of diazepam under several conditions in the rhesus monkeys. Psychopharmacology 86:108–113

    CAS  PubMed  Google Scholar 

  • Braida D, Pozzi M, Cavallini R, Sala M (2001a) Conditioned place preference induced by the cannabinoid agonist CP 55,940: interaction with the opioid system. Neuroscience 104:923–926

    Article  CAS  PubMed  Google Scholar 

  • Braida D, Pozzi M, Parolaro D, Sala M (2001b) Intracerebral self-administration of the cannabinoid receptor agonist CP 55,940 in the rat: interaction with the opioid system. Eur J Pharmacol 413:227–234

    Google Scholar 

  • Breivogel CS, Childers SR, Deadwyler SA, Hampson RE, Vogt LJ, Sim-Selley LJ (1999) Chronic delta9-tetrahydrocannabinol treatment produces a time-dependent loss of cannabinoid receptors and cannabinoid receptor-activated G proteins in rat brain. J Neurochem 73:2447–2459

    Article  CAS  PubMed  Google Scholar 

  • Breivogel CS, Griffin G, Di Marzo V, Martin BR (2001) Evidence for a new G protein-coupled cannabinoid receptor in mouse brain. Mol Pharmacol 60:155–163

    CAS  PubMed  Google Scholar 

  • Budney AJ, Novy PL, Hughes JR (1999) Marijuana withdrawal among adults seeking treatment for marijuana dependence. Addiction 94:1311–1322

    Article  CAS  PubMed  Google Scholar 

  • Budney, AJ, Hughes JR, Moore BA, Novy PL (2001) Marijuana abstinence effects in marijuana smokers maintained in their home environment. Arch Gen Psychiatry 58:917–924

    CAS  PubMed  Google Scholar 

  • Burkey RT, Nation JR (1997) (R)-Methanandamide, but not anandamide, substitutes for Δ9-THC in a drug-discrimination procedure. Exp Clin Psychopharmacol 5:195–202

    Google Scholar 

  • Cadoni C, Pisanu A, Solinas M, Acquas E, Di Chiara G (2001) Behavioural sensitization after repeated exposure to Δ9-tetrahydrocannabinol and cross-sensitization with morphine. Psychopharmacology 158:259–266

    Article  CAS  PubMed  Google Scholar 

  • Calignano A, La Rana G, Piomelli D (2001) Antinociceptive activity of the endogenous fatty acid amide, palmitylethanolamide. Eur J Pharmacol 419:191–198

    Google Scholar 

  • Campbell UC, Carroll ME (2000) Acquisition of drug self-administration: environmental and pharmacological interventions. Exp Clin Psychopharmacol 8:312–325

    CAS  PubMed  Google Scholar 

  • Carboni E, Imperato A, Perezzani L, Di Chiara G (1989) Amphetamine, cocaine, phencyclidine and nomifensine increase extracellular dopamine concentrations preferentially in the nucleus accumbens of freely moving rats. Neuroscience 28:653–661

    CAS  PubMed  Google Scholar 

  • Carney JM, Uwaydah IM, Balster, RL (1977) Evaluation of a suspension system for intravenous self-administration of water insoluble substances in the rhesus monkey. Pharmacol Biochem Behav 7:357–364

    Article  CAS  Google Scholar 

  • Carr KD (2002) Augmentation of drug reward by chronic food restriction: behavioral evidence and underlying mechanisms. Physiol Behav 76:353–364

    Article  CAS  PubMed  Google Scholar 

  • Carriero D, Aberman J, Lin SY, Hill A, Makriyannis A, Salamone JD (1998) A detailed characterization of the effects of four cannabinoid agonists on operant lever pressing. Psychopharmacology 137:147–156

    Google Scholar 

  • Castaneda E, Moss DE, Oddie SD, Whishaw IQ (1991) THC does not affect striatal dopamine release: microdialysis in freely moving rats. Pharmacol Biochem Behav 40:587–591

    CAS  PubMed  Google Scholar 

  • Chang JY, Sawyer SF, Lee RS, Woodward DJ (1994) Electrophysiological and pharmacological evidence for the role of the nucleus accumbens in cocaine self-administration in freely moving rats. J Neurosci 14:1224–1244

    CAS  PubMed  Google Scholar 

  • Chaperon F, Soubrie P, Puech AJ, Thiebot MH (1998) Involvement of central cannabinoid (CB1) receptors in the establishment of place conditioning in rats. Psychopharmacology 135:324–332

    Google Scholar 

  • Cheer JF, Kendall DA, Marsden CA (2000a) Cannabinoid receptors and reward in the rat: a conditioned place preference study. Psychopharmacology 151:25–30

    Google Scholar 

  • Cheer JF, Marsden CA, Kendall DA, Mason R (2000b) Lack of response suppression follows repeated ventral tegmental cannabinoid administration: an in vitro electrophysiological study. Neuroscience 99:661–667

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Paredes W, Li J, Smith D, Lowinson JH, Gardner EL (1990) Δ9-Tetrahydrocannabinol produces naloxoneblockable enhancement of presynaptic basal dopamine efflux in nucleus accumbens of conscious, freely-moving rats as measured by intracerebral microdialysis. Psychopharmacology 102:156–162

    Google Scholar 

  • Chen J, Paredes W, Lowinson JH, Gardner EL (1991) Strain-specific facilitation of dopamine efflux by Δ9-tetrahydrocannabinol in the nucleus accumbens of rat: an in vivo microdialysis study. Neurosci Lett 129:136–140

    CAS  PubMed  Google Scholar 

  • Chen J, Marmur R, Pulles A, Paredes W, Gardner EL (1993) Ventral tegmental microinjection of delta 9-tetrahydrocannabinol enhances ventral tegmental somatodendritic dopamine levels but not forebrain dopamine levels: evidence for local neural action by marijuana's psychoactive ingredient. Brain Res 621:65–70

    Article  CAS  PubMed  Google Scholar 

  • Childers SR, Breivogel CS (1998) Cannabis and endogenous cannabinoid systems. Drug Alcohol Depend 51:173–187

    CAS  PubMed  Google Scholar 

  • Corchero J, Fuentes JA, Manzanares J (1997a) Delta 9-Tetrahydrocannabinol increases proopiomelanocortin gene expression in the arcuate nucleus of the rat hypothalamus. Eur J Pharmacol 323:193–195

    Google Scholar 

  • Corchero J, Avila MA, Fuentes JA, Manzanares J (1997b) Δ9-tetrahydrocannabinol increases prodynorphin and proenkephalin gene expression in the spinal cord of the rat. Life Sci 61:39–43

    Article  PubMed  Google Scholar 

  • Costa B, Parolaro D, Colleoni M (1996) Chronic cannabinoid, CP-55,940, administration alters biotransformation in the rat. Eur J Pharmacol 313:17–24

    Google Scholar 

  • Costa B, Giagnoni G, Colleoni M (2000) Precipitated and spontaneous withdrawal in rats tolerant to anandamide. Psychopharmacology 149:121–128

    Article  CAS  PubMed  Google Scholar 

  • Cossu G, Ledent C, Fattore L, Imperato A, Bohme GA, Parmentier M, Fratta W (2001) Cannabinoid CB1 receptor knockout mice fail to self-administer morphine but not other drugs of abuse. Behav Brain Res 118:61–65

    CAS  PubMed  Google Scholar 

  • Coutts AA, Anavi-Goffer S, Ross RA, MacEwan DJ, Mackie K Pertwee RG, Irving AJ (2001) Agonist-induced internalization and trafficking of cannabinoid CB1 receptors in hippocampal neurons. J Neurosci 21:2425–2433

    CAS  PubMed  Google Scholar 

  • Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB (1996) Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384:83–87

    CAS  PubMed  Google Scholar 

  • Crowley TJ, Macdonald MJ, Whitmore EA, Mikulich SK (1998) Cannabis dependence, withdrawal, and reinforcing effects among adolescents with conduct symptoms and substance use disorders. Drug Alcohol Depend 50:27–37

    Article  CAS  PubMed  Google Scholar 

  • Damsma G, Day J, Fibiger HC (1989) Lack of tolerance to nicotine-induced dopamine release in the nucleus accumbens. Eur J Pharmacol 168:363–368

    CAS  PubMed  Google Scholar 

  • Da Silva GE, Morato GS, Takahashi RN (2001) Rapid tolerance to Delta(9)-tetrahydrocannabinol and cross-tolerance between ethanol and Delta(9)-tetrahydrocannabinol in mice. Eur J Pharmacol 431:201–207

    Article  PubMed  Google Scholar 

  • De Fonseca RF, Fernandez-Ruiz JJ, Murphy LL, Cebeira M, Steger RW, Bartke A, Ramos JA (1992) Acute effects of delta-9-tetrahydrocannabinol on dopaminergic activity in several rat brain areas. Pharmacol Biochem Behav 42:269–275

    Article  PubMed  Google Scholar 

  • De Fonseca RF, Gorriti MA, Fernandez-Ruiz JJ, Palomo T, Ramos JA (1994) Downregulation of rat brain cannabinoid binding sites after chronic delta-9-tetrahydrocannabinol treatment. Pharmacol Biochem Behav 47:33–40

    PubMed  Google Scholar 

  • De Fonseca RF, Carrera MRA, Navarro M, Koob GF, Weiss F (1997) Activation of corticotropin-releasing factor in the limbic system during cannabinoid withdrawal. Science 276:2050–2054

    PubMed  Google Scholar 

  • Devane WA, Dysarz FA, Johnson MR, Melvin LS, Howlett AC (1988) Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 34:605–613

    CAS  PubMed  Google Scholar 

  • Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949

    CAS  PubMed  Google Scholar 

  • De Vries TJ, Schoffelmeer AN, Binnekade R, Mulder AH, Vanderschuren LJ (1998) Drug-induced reinstatement of heroin- and cocaine-seeking behaviour following long-term extinction is associated with expression of behavioural sensitization. Eur J Neurosci 10:3565–3571

    PubMed  Google Scholar 

  • Diana M, Melis M, Muntoni AL, Gessa GL (1998) Mesolimbic dopaminergic decline after cannabinoid withdrawal. Proc Natl Acad Sci USA 95:10269–10273

    CAS  PubMed  Google Scholar 

  • Di Chiara G, Imperato A (1986) Preferential stimulation of dopamine release in the nucleus accumbens by opiates, alcohol, and barbiturates: studies with transcerebral dialysis in freely moving rats. Ann NY Acad Sci 473:367–381

    PubMed  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85:5274–5278

    PubMed  Google Scholar 

  • Di Chiara G, North RA (1992) Neurobiology of opiate abuse. Trends Pharmacol Sci 13:185–193

    PubMed  Google Scholar 

  • Di Chiara G, Tanda G, Bassareo V, Pontieri F, Acquas E, Fenu S, Cadoni C, Carboni E (1999) Drug addiction as a disorder of associative learning: role of nucleus accumbens shell/extended amygdala dopamine. Ann NY Acad Sci 877:461–485

    PubMed  Google Scholar 

  • Di Marzo V (1999) Biosynthesis and inactivation of endocannabinoids: relevance to their proposed role as neuromodulators. Life Sci 65:645–655

    Google Scholar 

  • Di Marzo V, Fontana A, Cadas H, Schinelli S, Cimino G, Schwartz JC, Piomelli D (1994) Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 372:686–691

    Google Scholar 

  • Di Marzo V, Berrendero F, Bisogno T, Gonzalez S, Cavaliere P, Romero J, Cebeira M, Ramos JA, Fernandez-Ruiz JJ (2000) Enhancement of anandamide formation in the limbic forebrain and reduction of endocannabinoid contents in the striatum of delta9-tetrahydrocannabinol-tolerant rats. J Neurochem 74:1627–1635

    Article  PubMed  Google Scholar 

  • Doty P, Dykstra LA, Picker MJ (1994) Discriminative stimulus effects of phencyclidine: pharmacologically specific interactions with delta 9- and delta 8-tetrahydrocannabinol. Drug Alcohol Depend 35:151–158

    CAS  PubMed  Google Scholar 

  • Fattore L, Cossu G, Martellotta CM, Fratta W (2001) Intravenous self-administration of the cannabinoid CB1 receptor agonist WIN 55,212-2 in rats. Psychopharmacology 156:410–416

    Google Scholar 

  • Felder CC, Glass M (1998) Cannabinoid receptors and their endogenous agonists. Annu Rev Pharmacol Toxicol 3:179–200

    Google Scholar 

  • French ED, Dillon K, Wu X (1997) Cannabinoids excite dopamine neurons in the ventral tegmentum and substantia nigra. Neuroreport 8:649–652

    CAS  Google Scholar 

  • Gaoni Y, Mechoulam R (1964) Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc 86:1646–1647

    CAS  Google Scholar 

  • Gardner EL, Parades W, Smith D, Zukin RS (1989) facilitation of brain stimulation reward by delta-9-tetrahydrocannabinol is mediated by an endogenous opioid mechanism. Adv Biosci 75:671–674

    CAS  Google Scholar 

  • Gardner EL, Vorel SR (1998) Cannabinoid transmission and reward related events. Neurobiol Dis 5:502–533

    CAS  PubMed  Google Scholar 

  • Ghozland S, Mathews H, Simonin F, Filliol D, Kieffer BL, Maldonado R (2002) Motivational effects of cannabinoids are mediated by µ- and κ-opioid receptors. J Neurosci 22:1146–1154

    CAS  PubMed  Google Scholar 

  • Gifford AN, Gardner EL, Ashby CR Jr (1997) The effect of intravenous administration of delta-9-tetrahydrocannabinol on the activity of A10 dopamine neurons recorded in vivo in anesthetized rats. Neuropsychobiology 36:96–99

    CAS  PubMed  Google Scholar 

  • Gifford AN, Bruneus M, Lin S, Goutopoulos A, Makriyannis A, Volkow ND, Gatley SJ (1999) Potentiation of the action of anandamide on hippocampal slices by the fatty acid amide hydrolase inhibitor, palmitylsulphonyl fluoride (AM 374). Eur J Pharmacol 383:9–14

    Article  CAS  PubMed  Google Scholar 

  • Giuffrida A, Beltramo M, Piomelli D (2001) Mechanisms of endocannabinoid inactivation: biochemistry and pharmacology. J Pharmacol Exp Ther 298:7–14

    CAS  PubMed  Google Scholar 

  • Gold LH, Balster RL, Barrett RL, Britt DT, Martin BRA (1992) Comparison of the discriminative stimulus properties of delta 9-tetrahydrocannabinol and CP 55,940 in rats and rhesus monkeys. J Pharmacol Exp Ther 262:479–486

    CAS  PubMed  Google Scholar 

  • Goldberg SR, Munzar P, Justinova Z, Tanda G (2001) Effect of naltrexone on intravenous self-administration of delta-9-tetrahydrocannabinol (THC) by squirrel monkeys under fixed-ratio and second-order schedules. In: Abstracts of the 2001 symposium on cannabinoids. International Cannabinoid Research Society, Burlington, p 102

  • Gorriti MA, Rodriguez de Fonseca F, Navarro M, Palomo T (1999) Chronic (-)-delta9-tetrahydrocannabinol treatment induces sensitization to the psychomotor effects of amphetamine in rats. Eur J Pharmacol 365:133–142

    Google Scholar 

  • Greenwald MK, Stitzer ML (2000) Antinociceptive, subjective and behavioral effects of smoked marijuana in humans. Drug Alcohol Depend 59:261–275

    Article  CAS  PubMed  Google Scholar 

  • Griffiths RR, Roache JD, Ator NA, Lamb RJ, Lukas SE (1985) Similarities in reinforcing and discriminative stimulus effects of diazepam, triazolam, and pentobarbital in animals and humans. In: Seiden LS, Balster RL (eds) Behavioral pharmacology: the current status. Liss, New York, pp 419–432

  • Haney M, Comer SD, Ward AS, Foltin RW, Fischman MW (1997) Factors influencing marijuana self-administration by humans. Behav Pharmacol 8:101–112

    Google Scholar 

  • Haney M, Ward AS, Comer SD, Foltin RW, Fischman MW (1999) Abstinence symptoms following smoked marijuana in humans. Psychopharmacology 141:395–404

    Google Scholar 

  • Hanus L, Abu-Lafi S, Fride E, Breuer A, Vogel Z, Shalev DE, Kustanovich I, Mechoulam R (2001) 2-Arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proc Natl Acad Sci USA 98:3662–3665

    Article  CAS  PubMed  Google Scholar 

  • Harris RT, Waters W, McLendon D (1974) Evaluation of reinforcing capability of Δ9-tetrahydrocannabinol in monkeys. Psychopharmacologia 37:23–29

    CAS  PubMed  Google Scholar 

  • Hernandez L, Hoebel BG (1988) Food reward and cocaine increase extracellular dopamine in the nucleus accumbens as measured by microdialysis. Life Sci 42:1705–1712

    CAS  PubMed  Google Scholar 

  • Hillard CJ, Jarrahian A (2000) The movement of N-arachidonoylethanolamine (anandamide) across cellular membranes. Chem Phys Lipids 108:123–134

    Google Scholar 

  • Hine B, Friedman E, Torrelio M, Gershon S (1975) Morphine-dependent rats: blockade of precipitated abstinence by tetrahydrocannabinol. Science 187:443–445

    CAS  PubMed  Google Scholar 

  • Huang SM, Bisogno T, Trevisani M, Al-Hayani A, De Petrocellis L, Fezza F, Tognetto M, Petros TJ, Krey JF, Chu CJ, Miller JD, Davies SN, Geppetti P, Walker JM, Di Marzo V (2002) An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci USA 99:8400–8405

    Article  CAS  PubMed  Google Scholar 

  • Hutcheson DM, Tzavara ET Smadja C, Valjent E, Roques BP, Hanoune J, Maldonado R (1998) Behavioral and biochemical evidence for signs of abstinence in mice chronically treated with delta-9-tetrahydrocannabinol. Br J Pharmacol 125:1567–1577

    CAS  PubMed  Google Scholar 

  • Járai Z, Wagner JA, Varga K, Lake KD, Compton DR, Martin BR, Zimmer AM, Bonner TI, Buckley NE, Mezey E, Razdan RK, Zimmer A, Kunos G (1999) Cannabinoid-induced mesenteric vasodilation through an endothelial site distinct from CB1 or CB2 receptors. Proc Natl Acad Sci USA 96:14136–14141

    Article  PubMed  Google Scholar 

  • Järbe TU, Lamb RJ, Makriyannis A, Lin S, Goutopoulos A (1998) Δ9-THC training dose as a determinant for (R)-methanandamide generalization in rats. Psychopharmacology 140:519–522

    Google Scholar 

  • Järbe TU, Lamb RJ, Lin S, Makriyannis A (2000) Delta 9-THC training dose as a determinant for (R)-methanandamide generalization in rats: a systematic replication. Behav Pharmacol 11:81–86

    PubMed  Google Scholar 

  • Järbe TU, Lamb RJ, Lin S, Makriyannis A (2001) (R)-methanandamide and Delta 9-THC as discriminative stimuli in rats: tests with the cannabinoid antagonist SR-141716 and the endogenous ligand anandamide. Psychopharmacology 156:369–380

    Google Scholar 

  • Johnson SW, North RA (1992) Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 12:483–488

    PubMed  Google Scholar 

  • Justinova Z, Tanda G, Redhi GH, Goldberg SR (2003) Self-administration of Δ9–tetrahydrocannabinol (THC) by drug naive squirrel monkeys. Psychopharmacology DOI 10.1007/s00213-003-1484-0

  • Kalivas PW, Duffy P (1990) Effect of acute and daily cocaine treatment on extracellular dopamine in the nucleus accumbens. Synapse 5:48–58

    CAS  PubMed  Google Scholar 

  • Kato S, Wakasa Y, Yanagita T (1987) Relationship between minimum reinforcing doses and injection speed in cocaine and pentobarbital self-administration in crab-eating monkeys. Pharmacol Biochem Behav 28:407–10

    Google Scholar 

  • Kathuria S, Gaetani S, Fegley D, Valino F, Duranti A, Tontini A, Mor M, Tarzia G, Rana GL, Calignano A, Giustino A, Tattoli M, Palmery M, Cuomo V, Piomelli D (2003) Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 9:76–81

    Article  CAS  PubMed  Google Scholar 

  • Katz JL, Goldberg SR (1988) Preclinical assessment of abuse liability of drugs. Agents Actions 23:18–26

    Google Scholar 

  • Kaymakcalan S (1972) Physiology and psychological dependence on THC in rhesus monkeys. In: Paton WDM, Crown J (eds) Cannabis and its derivatives. Oxford University Press, London, pp 142–149

  • Kaymakcalan S (1973) Tolerance to and dependence on cannabis. Bull Narc 25:39–47

    CAS  Google Scholar 

  • Kaymakcalan S, Ayhan IH, Tulunay FC (1977) Naloxone-induced or postwithdrawal abstinence signs in delta9-tetrahydrocannabinol-tolerant rats. Psychopharmacology 55:243–249

    CAS  PubMed  Google Scholar 

  • Kirk JM, De Wit H (1999) Responses to oral delta9-tetrahydrocannabinol in frequent and infrequent marijuana users. Pharmacol Biochem Behav 63:137–142

    CAS  PubMed  Google Scholar 

  • Koob GF (1992) Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 13:177–184

    PubMed  Google Scholar 

  • Koob GF, Le Moal M (1997) Drug abuse: hedonic homeostatic dysregulation. Science 278:52–58

    CAS  PubMed  Google Scholar 

  • Koob GF, Le Moal M (2001) Drug addiction, dysregulation of reward and allostasis. Neuropsychopharmocology 24:97–129

    Article  CAS  Google Scholar 

  • Kreek MJ, Koob GF (1998) Drug dependence: stress and dysregulation of brain reward pathways. Drug Alcohol Depend 51:23–47

    Google Scholar 

  • Kuczenski R, Segal DS, Aizenstein ML (1991) Amphetamine, cocaine, and fencamfamine: relationship between locomotor and stereotypy response profiles and caudate and accumbens dopamine dynamics. J Neurosci 11:2703–2712

    CAS  PubMed  Google Scholar 

  • Landsman RS, Burkey TH, Consroe P, Roeske WR, Yamamura HI (1997) SR141716A is an inverse agonist at the human cannabinoid CB1 receptor. Eur J Pharmacol 334:R1–2

    PubMed  Google Scholar 

  • Lamarque S, Taghzouti K, Simon H (2001) Chronic treatment with delta(9)-tetrahydrocannabinol enhances the locomotor response to amphetamine and heroin. Implications for vulnerability to drug addiction. Neuropharmacology 41:118–129

    Google Scholar 

  • Lambert DM, Di Marzo V (1999) The palmitoylethanolamide and oleamide enigmas: are these two fatty acid amides cannabimimetic? Curr Med Chem 6:757–773

    Google Scholar 

  • Ledent C, Valverde O, Cossu G, Petitet F, Aubert JF, Beslot F, Bohme GA, Imperato A, Pedrazzini T, Roques BP, Vassart G, Fratta W, Parmentier M (1999) Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science 283:401–404

    CAS  PubMed  Google Scholar 

  • Leite JR, Carlini EA (1974) Failure to obtain ''cannabis directed behavior'' and abstinence syndrome in rats chronically treated with cannabis sativa extracts. Psychopharmacologia 36:133–145

    Google Scholar 

  • Lepore M, Vorel SR, Lowinson J, Gardner EL (1995) Conditioned place preference induced by Δ9-tetrahydrocannabinol: comparison with cocaine, morphine, and food reward. Life Sci 56:2073–2080

    CAS  PubMed  Google Scholar 

  • Lepore M, Liu X, Savage V, Matalon D, Gardner EL (1996) Genetic differences in Δ9-tetrahydrocannabinol-induced facilitation of brain stimulation reward as measured by a rate-frequency curve-shift electrical brain stimulation paradigm in three different rat strains. Life Sci (Pharmacol Lett) 58:PL365–PL372

    Google Scholar 

  • Leuschner JT, Wing DR, Harvey DJ, Brent GA, Dempsey CE, Watts A, Paton WD (1984) The partitioning of delta 1-tetrahydrocannabinol into erythrocyte membranes in vivo and its effect on membrane fluidity. Experientia 40:866–868

    CAS  PubMed  Google Scholar 

  • Lindgren JE, Ohlsson A, Agurell S, Hollister L, Gillespie H (1981) Clinical effects and plasma levels of delta 9-tetrahydrocannabinol (delta 9-THC) in heavy and light users of cannabis. Psychopharmacology 74:208–212

    CAS  PubMed  Google Scholar 

  • Mailleux P, Vanderhaeghen JJ (1992) Distribution of the neuronal cannabinoid receptor in the adult rat brain: a comparative receptor binding radioautography and in situ hybridization histochemistry. Neuroscience 48:655–688

    PubMed  Google Scholar 

  • Maldonado R (2002) Study of cannabinoid dependence in animals. Pharmacol Ther 95:153–164

    Article  CAS  PubMed  Google Scholar 

  • Maldonado R, Rodriguez de Fonseca F (2002) Cannabinoid addiction: behavioral models and neural correlates. J Neurosci 22:3326–3331

    CAS  PubMed  Google Scholar 

  • Mallet PE, Beninger RJ (1998) Delta 9-tetrahydrocannabinol, but not the endogenous cannabinoid receptor ligand anandamide, produces conditioned place avoidance. Life Sci 62:2431–2439

    Google Scholar 

  • Mansbach RS, Nicholson KL, Martin BR, Balster RL (1994) Failure of Δ9-tetrahydrocannabinol and CP 55,940 to maintain intravenous self-administration under a fixed-interval schedule in rhesus monkeys. Behav Pharmacol 5:219–225

    CAS  Google Scholar 

  • Mansbach RS, Rovetti CC, Winston EN, Lowe JA III (1996) Effects of the cannabinoid CB1 receptor antagonist SR141716A on the behavior of pigeons and rats. Psychopharmacology 124:315–322

    Google Scholar 

  • Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ (1988) Anatomy of CNS opioid receptors. Trends Neurosci 11:308–314

    CAS  PubMed  Google Scholar 

  • Manzanares J, Corchero J, Romero J, Fernandez-Ruiz JJ, Ramos JA, Fuentes JA (1998) Chronic administration of cannabinoids regulates proenkephalin mRNA levels in selected regions of the rat brain. Mol Brain Res 55:126–132

    CAS  PubMed  Google Scholar 

  • Manzanares J, Corchero J, Romero J, Fernandez-Ruiz JJ, Ramos JA, Fuentes JA (1999) Pharmacological and biochemical interactions between opioids and cannabinoids. Trends Pharmacol Sci 20:287–94

    CAS  PubMed  Google Scholar 

  • Martellotta MC, Cossu G, Fattore L, Gessa GL, Fratta W (1998) Self-administration of the cannabinoid receptor agonist WIN 55,212–2 in drug-naive mice. Neuroscience 85:327–330

    Google Scholar 

  • Martin BR (2002) Identification of the endogenous cannabinoid system through integrative pharmacological approaches. J Pharmacol Exp Ther 301:790–796

    Google Scholar 

  • Martin BR, Lichtman AH (1998) Cannabinoid transmission and pain perception. Neurobiol Dis 5:447–461

    Article  CAS  PubMed  Google Scholar 

  • Martin BR, Mechoulam R, Razdan RK (1999) Discovery and characterization of endogenous cannabinoids. Life Sci 65:573–595

    Article  CAS  Google Scholar 

  • Martin M, Ledent C, Parmentier M, Maldonado R, Valverde O (2000) Cocaine, but not morphine, induces conditioned place preference and sensitization to locomotor responses in CB1 knockout mice. Eur J Neurosci 12:4038–4046

    CAS  PubMed  Google Scholar 

  • Mascia MS, Obinu MC, Ledent C, Parmentier M, Bohme GA, Imperato A, Fratta W (1999) Lack of morphine-induced dopamine release in the nucleus accumbens of cannabinoid CB(1) receptor knockout mice. Eur J Pharmacol 383:R1–R2

    CAS  PubMed  Google Scholar 

  • Mas-Nieto M, Pommier B, Tzavara ET, Caneparo A, Da Nascimento S, Le Fur G, Roques BP, Noble F (2001) Reduction of opioid dependence by the CB(1) antagonist SR141716A in mice: evaluation of the interest in pharmacotherapy of opioid addiction. Br J Pharmacol 132:1809–1816

    CAS  PubMed  Google Scholar 

  • Massi P, Sacerdote P, Ponti W, Fuzio D, Manfredi B, Vigano D, Rubino T, Bardotti M, Parolaro D (1998) Immune function alterations in mice tolerant to delta9-tetrahydrocannabinol: functional and biochemical parameters. J Neuroimmunol 92:60–66

    Google Scholar 

  • Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564

    CAS  PubMed  Google Scholar 

  • McGregor IS, Issakidis CN, Prior G (1996) Aversive effects of the synthetic cannabinoid CP 55,940 in rats. Pharmacol Biochem Behav 53:657–664

    CAS  PubMed  Google Scholar 

  • Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR, Pertwee RG, Griffin G, Bayewitch M, Barg J, Vogel Z (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90

    CAS  PubMed  Google Scholar 

  • Merlo Pich E, Lorang M, Yeganeh M, de Fonseca FR, Raber J, Koob GF, Weiss F (1995) Increase of extracellular corticotropin-releasing factor-like immunoreactivity levels in the amygdala of awake rats during restraint stress and ethanol withdrawal as measured by microdialysis. J Neurosci 15:5439–5447

    CAS  PubMed  Google Scholar 

  • Mokler DJ, Nelson BD, Harris LS, Rosecrans JA (1986) The role of benzodiazepine receptors in the discriminative stimulus properties of delta-9-tetrahydrocannabinol. Life Sci 38:1581–1589

    Article  CAS  PubMed  Google Scholar 

  • Nava F, Carta G, Colombo G, Gessa GL (2001) Effects of chronic Delta(9)-tetrahydrocannabinol treatment on hippocampal extracellular acetylcholine concentration and alternation performance in the T-maze. Neuropharmacology 41:392–329

    Article  CAS  PubMed  Google Scholar 

  • Navarro M, Fernandez-Ruiz JJ, de Miguel R, Hernandez ML, Cebeira M, Ramos JA (1993) An acute dose of delta 9-tetrahydrocannabinol affects behavioral and neurochemical indices of mesolimbic dopaminergic activity. Behav Brain Res 57:37–46

    Article  CAS  PubMed  Google Scholar 

  • Navarro M, Chowen J, Rocio A Carrera M, del Arco I, Villanua MA, Martin Y, Roberts AJ, Koob GF, de Fonseca FR (1998) CB1 cannabinoid receptor antagonist-induced opiate withdrawal in morphine-dependent rats. Neuroreport 9:3397–3402

    CAS  PubMed  Google Scholar 

  • Navarro M, Carrera MR, Fratta W, Valverde O, Cossu G, Fattore L, Chowen JA, Gomez R, Del Arco I, Villanua MA, Maldonado R, Koob GF, de Fonseca FR (2001) Functional interaction between opioid and cannabinoid receptors in drug self-administration. J Neurosci 21:5344–5350

    CAS  PubMed  Google Scholar 

  • Nowlan R, Cohen S (1977) Tolerance to marijuana: heart rate and subjective "high." Clin Pharmacol Ther 22:550–556

    Google Scholar 

  • Olds ME, Fobes JL (1981) The central basis of motivation: intracranial self-stimulation studies. Ann Rev Psychol 32:523–574

    CAS  Google Scholar 

  • Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47:419–427

    Google Scholar 

  • Oviedo A, Glowa J, Herkenham M (1993) Chronic cannabinoid administration alters cannabinoid receptor binding in rat brain: a quantitative autoradiographic study. Brain Res 616:293–302

    Google Scholar 

  • Palmer SL, Thakur GA, Makriyannis A (2002) Cannabinergic ligands. Chem Phys Lipids 121:3–19

    Google Scholar 

  • Panlilio LV, Goldberg SR, Gilman JP, Jufer R, Cone EJ, Schindler CW (1998) Effects of delivery rate and non-contingent infusion of cocaine on cocaineself-administration in rhesus monkeys. Psychopharmacology 137:253–258

    CAS  PubMed  Google Scholar 

  • Paton WD (1975) Pharmacology of marijuana. Annu Rev Pharmacol 15:191–220

    CAS  PubMed  Google Scholar 

  • Perez-Reyes M, White WR, McDonald SA, Hicks RE, Jeffcoat AR, Cook CE (1991) The pharmacologic effects of daily marijuana smoking in humans. Pharmacol Biochem Behav 40:691–694

    Article  CAS  PubMed  Google Scholar 

  • Perio A, Rinaldi-Carmona M, Maruani J, Barth F, Le Fur G, Soubrie P (1996) Central mediation of the cannabinoid cue: activity of a selective CB1 antagonist, SR 141716A. Behav Pharmacol 7:65–71

    PubMed  Google Scholar 

  • Pertwee RG (1999) Pharmacology of cannabinoid receptor ligands. Curr Med Chem 6:635–664

    PubMed  Google Scholar 

  • Pertwee RG, Stevenson LA, Griffin G (1993) Cross-tolerance between delta-9-tetrahydrocannabinol and the cannabimimetic agents, CP 55,940, WIN 55,212–2 and anandamide. Br J Pharmacol 110:1483–1490

    CAS  PubMed  Google Scholar 

  • Pickens R, Thompson T, Muchow DC (1973) Cannabis and phencyclidine self-administered by animals. In: Goldfarb L, Hoffmeister F (eds) Psychic dependence [Bayer-Symposium IV]. Springer, Berlin Heidelberg New York, pp 78–86

  • Piomelli D, Beltramo M, Giuffrida A, Stella N (1998) Endogenous cannabinoid signaling. Neurobiol Dis 5:462–473

    Article  CAS  PubMed  Google Scholar 

  • Piomelli D, Giuffrida A, Calignano A, de Fonseca RF (2000) The endocannabinoid system as a target for therapeutic drugs. Trends Pharmacol Sci 21:218–224

    CAS  PubMed  Google Scholar 

  • Pontieri FE, Tanda G, Di Chiara G (1995) Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the ''shell'' as compared with the ''core'' of the rat nucleus accumbens. Proc Natl Acad Sci USA 92:12304–12308

    CAS  PubMed  Google Scholar 

  • Pontieri FE, Tanda G, Orzi F, Di Chiara G (1996) Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 382:255–257

    CAS  PubMed  Google Scholar 

  • Pontieri FE, Monnazzi P, Scontrini A, Buttarelli FR, Patacchioli FR (2001a) Behavioral sensitization to heroin by cannabinoid pretreatment in the rat. Eur J Pharmacol 421:R1–R3

    Article  CAS  Google Scholar 

  • Pontieri FE, Monnazzi P, Scontrini A, Buttarelli FR, Patacchioli FR (2001b) Behavioral sensitization to WIN 55212.2 in rats pretreated with heroin. Brain Res 898:178–180

    Article  CAS  PubMed  Google Scholar 

  • Pope HG, Yurgelun-Todd D (1996) The residual cognitive effects of heavy marijuana use in college students. JAMA 275:521–527

    Article  CAS  PubMed  Google Scholar 

  • Pope HG Jr, Gruber AJ, Hudson JI, Huestis MA, Yurgelun-Todd D (2001) Neuropsychological performance in long-term cannabis users. Arch Gen Psychiatry 58:909–915

    PubMed  Google Scholar 

  • Porter AC, Sauer JM, Knierman MD, Becker GW, Berna MJ, Bao J, Nomikos GG, Carter P, Bymaster FP, Leese AB, Felder CC (2002) Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor. J Pharmacol Exp Ther 301:1020–1024

    Article  CAS  PubMed  Google Scholar 

  • Prado-Alcala R, Wise RA (1984) Brain stimulation reward and dopamine terminal fields: I. caudate-putamen, nucleus accumbens and amygdala. Brain Res 297:265–273

    Article  CAS  PubMed  Google Scholar 

  • Richter RM, Pich EM, Koob GF, Weiss F (1995) Sensitization of cocaine-stimulated increase in extracellular levels of corticotropin-releasing factor from the rat amygdala after repeated administration as determined by intracranial microdialysis. Neurosci Lett 187:169–172

    CAS  PubMed  Google Scholar 

  • Richter RM, Weiss F (1999) In vivo CRF release in rat amygdala is increased during cocaine withdrawal in self-administering rats. Synapse 32:254–261

    Article  CAS  PubMed  Google Scholar 

  • Rinaldi-Carmona M, Barth F, Heaulme M, Shire D, Calandra B, Congy C, Martinez S, Maruani J, Neliat G, Caput D, Ferrara P, Soubrie P, Breliere JC, Le Fur GL (1994) SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett 350:240–244

    PubMed  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18:247–291

    CAS  PubMed  Google Scholar 

  • Robinson TE, Berridge KC (2001) Incentive-sensitization and addiction. Addiction 96:103–114

    CAS  PubMed  Google Scholar 

  • Romero J, Garcia-Palomero E, Castro JG, Garcia-Gil L, Ramos JA, Fernandez-Ruiz JJ (1997) Effects of chronic exposure to delta9-tetrahydrocannabinol on cannabinoid receptor binding and mRNA levels in several rat brain regions. Brain Res Mol Brain Res 46:100–108

    Google Scholar 

  • Romero J, Berrendero F, Manzanares J, Perez A, Corchero J, Fuentes A, Fernandez-Ruiz JJ, Ramos JA (1998) Time-course of the cannabinoid receptor down-regulation in the adult rat brain caused by repeated exposure to delta 9-tetrahydrocannabinol. Synapse 30:298–308

    CAS  PubMed  Google Scholar 

  • Romero J, Lastres-Becker I, de Miguel R, Berrendero F, Ramos JA, Fernandez-Ruiz JJ (2002)The endogenous cannabinoid system and the basal ganglia. biochemical, pharmacological, and therapeutic aspects. Pharmacol Ther 95:137–152

    Article  CAS  PubMed  Google Scholar 

  • Rossetti ZL, Melis F, Carboni S, Gessa GL (1991) Marked decrease of extraneuronal dopamine after alcohol withdrawal in rats: reversal by MK-801. Eur J Pharmacol 200:371–372

    Google Scholar 

  • Rossetti ZL, Hmaidan Y, Gessa GL (1992a) Marked inhibition of mesolimbic dopamine release: a common feature of ethanol, morphine, cocaine and amphetamine abstinence in rats. Eur J Pharmacol 221:227–234

    CAS  PubMed  Google Scholar 

  • Rossetti ZL, Melis F, Carboni S, Gessa GL (1992b) Dramatic depletion of mesolimbic extracellular dopamine after withdrawal from morphine, alcohol or cocaine: a common neurochemical substrate for drug dependence. Ann NY Acad Sci 654:513–526

    CAS  PubMed  Google Scholar 

  • Rubino T, Patrini G, Parenti M, Massi P, Parolaro D (1997a) Chronic treatment with a synthetic cannabinoid CP-55,940 alters G-protein expression in the rat central nervous system. Brain Res Mol Brain Res 44:191–197

    Article  CAS  PubMed  Google Scholar 

  • Rubino T, Tizzoni L, Vigano D, Massi P, Parolaro D (1997b) Modulation of rat brain cannabinoid receptors after chronic morphine treatment. Neuroreport 8:3219–3223

    CAS  PubMed  Google Scholar 

  • Rubino T, Vigano D, Massi P, Parolaro D (2001) The psychoactive ingredient of marijuana induces behavioural sensitization. Eur J Neurosci 14:884–886

    Article  CAS  PubMed  Google Scholar 

  • Rubio P, de Fonseca RF, Martin-Calderon JL, Del Arco I, Bartolome S, Villanua MA, Navarro M (1998) Maternal exposure to low doses of delta9-tetrahydrocannabinol facilitates morphine-induced place conditioning in adult male offspring. Pharmacol Biochem Behav 61:229–238

    Article  CAS  PubMed  Google Scholar 

  • Sanudo-Pena MC, Tsou K, Delay ER, Hohman AG, Force M, Walker JM (1997) Endogenous cannabinoids as an aversive or counter-rewarding system in the rat. Neurosci Lett 223:125–128

    PubMed  Google Scholar 

  • Schlichting UU, Goldberg SR, Wuttke W, Hoffmeister F (1971) D-amphetamine self administration by rhesus monkeys with different self administration histories. Excerpta Medica International Congress Series 220:62–69

    Google Scholar 

  • Smith NT (2002) A review of the published literature into cannabis withdrawal symptoms in human users. Addiction 97:621–632

    Article  PubMed  Google Scholar 

  • Smith PB, Welch SP, Martin BR (1994) Interactions between Δ9-tetrahydrocannabinol and kappa opioids in mice. J Pharmacol Exp Ther 268:1381–1387

    CAS  PubMed  Google Scholar 

  • Takahashi RN, Singer G (1979) Self-administration of Δ9-tetrahydrocannabinol by rats. Pharmacol Biochem Behav 11:737–740

    CAS  PubMed  Google Scholar 

  • Takahashi RN, Singer G (1980) Effects of body weight levels on cannabis self-administration. Pharmacol Biochem Behav 13:877–881

    Article  CAS  PubMed  Google Scholar 

  • Tanda G, Pontieri FE, Di Chiara G (1997) Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common µ1 opioid receptor mechanism. Science 276:2048–2050

    CAS  PubMed  Google Scholar 

  • Tanda G, Loddo P, Di Chiara G (1999) Dependence of mesolimbic dopamine transmission on delta9-tetrahydrocannabinol. Eur J Pharmacol 376:23–26

    Google Scholar 

  • Tanda G, Munzar P, Goldberg SR (2000) Self-administration behavior is maintained by the psychoactive ingredient of marijuana in squirrel monkeys. Nature Neurosci 3:1073–1074

    Article  CAS  PubMed  Google Scholar 

  • Thorat SN, Bhargava HN (1994) Evidence for a bidirectional cross-tolerance between morphine and Δ9-tetrahydrocannabinol in mice. Eur J Pharmacol 260:5–13

    Article  CAS  PubMed  Google Scholar 

  • Tsou K, Patrick SL, Walker JM (1995) Physical withdrawal in rats tolerant to delta 9-tetrahydrocannabinol precipitated by a cannabinoid receptor antagonist. Eur J Pharmacol 280:R13–R15

    Article  CAS  PubMed  Google Scholar 

  • Tzschentke TM (1998) Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog Neurobiol 56:613–672

    CAS  PubMed  Google Scholar 

  • Valjent E, Maldonado R (2000) A behavioural model to reveal place preference to Δ9-tetrahydrocannabinol in mice. Psychopharmacology 147:436–438

    Google Scholar 

  • Valverde O, Maldonado R, Valjent E, Zimmer AM, Zimmer A (2000) Cannabinoid withdrawal syndrome is reduced in pre-proenkephalin knock-out mice. J Neurosci 20:9284–9289

    Google Scholar 

  • Valverde O, Noble F, Beslot F, Dauge V, Fournie-Zaluski MC, Roques BP (2001) Delta9-tetrahydrocannabinol releases and facilitates the effects of endogenous enkephalins: reduction in morphine withdrawal syndrome without change in rewarding effect. Eur J Neurosci 13:1816–1824

    CAS  PubMed  Google Scholar 

  • Van Ree JM, Slangen JL, de Wied D (1978) Intravenous self-administration of drugs in rats. J Pharmacol Exp Ther 204:547–557

    Google Scholar 

  • Vela G, Ruiz-Gayo M, Fuentes JA (1995) Anandamide decreases naloxone-precipitated withdrawal signs in mice chronically treated with morphine. Neuropharmacology 34:665–668

    Google Scholar 

  • Vela G, Martin S, Garcia-Gil L, Crespo JA, Ruiz-Gayo M, Javier Fernandez-Ruiz J, Garcia-Lecumberri C, Pelaprat D, Fuentes JA, Ramos JA, Ambrosio E (1998) Maternal exposure to delta9-tetrahydrocannabinol facilitates morphine self-administration behavior and changes regional binding to central mμ opioid receptors in adult offspring female rats. Brain Res 807:101–109

    Google Scholar 

  • Wachtel SR, de Wit H (2000) Naltrexone does not block the subjective effects of oral Delta(9)-tetrahydrocannabinol in humans. Drug Alcohol Depend 59:251–260

    Article  CAS  PubMed  Google Scholar 

  • Wakasa Y, Takada K, Yanagita T (1995) Reinforcing effect as a function of infusion speed in intravenous self-administration of nicotine in rhesus monkeys. Nihon Shinkei Seishin Yakurigaku Zasshi 15:53–59

    CAS  PubMed  Google Scholar 

  • Weisbeck GA, Schuckit MA, Kalmijn JA, Tipp JE, Bucholz KK, Smith TL (1996) An evaluation of the history of a marijuana withdrawal syndrome in a large population. Addiction 91:1469–1478

    Article  PubMed  Google Scholar 

  • Walker JM, Krey JF, Chu CJ, Huang SM (2002) Endocannabinoids and related fatty acid derivatives in pain modulation. Chem Phys Lipids 121:159–172

    Google Scholar 

  • Welch SP (1997) Characterization of anandamide-induced tolerance: comparison to delta 9-THC-induced interactions with dynorphinergic systems. Drug Alcohol Depend 45:39–45

    Article  CAS  PubMed  Google Scholar 

  • Wiley JL (1999) Cannabis: discrimination of "internal bliss"? Pharmacol Biochem Behav 64:257–260

    Google Scholar 

  • Wiley JL, Martin BR (1999) Effects of SR141716A on diazepam substitution for delta9-tetrahydrocannabinol in rat drug discrimination. Pharmacol Biochem Behav 64:519–522

    Article  CAS  PubMed  Google Scholar 

  • Wiley JL, Barrett RL, Balster RL, Martin BR (1993a) Tolerance to the discriminative stimulus effects of delta(9)-tetrahydrocannabinol. Behav Pharmacol 4:581–585

    CAS  PubMed  Google Scholar 

  • Wiley JL, Barrett RL, Britt DT, Balster RL, Martin BR (1993b) Discriminative stimulus effects of delta 9-tetrahydrocannabinol and delta 9–11-tetrahydrocannabinol in rats and rhesus monkeys. Neuropharmacology 32:359–365

    Article  CAS  PubMed  Google Scholar 

  • Wiley JL, Balster RL, Martin BR (1995a) Discriminative stimulus effects of anandamide in rats. Eur J Pharmacol 276:49–54

    CAS  PubMed  Google Scholar 

  • Wiley JL, Barrett RL, Lowe J, Balster RL, Martin BR (1995b) Discriminative stimulus effects of CP 55,940 and structurally dissimilar cannabinoids in rats. Neuropharmacology 34:669–676

    Google Scholar 

  • Wiley JL, Huffman JW, Balster RL, Martin BR (1995c) Pharmacological specificity of the discriminative stimulus effects of Δ9-tetrahydrocannabinol in rhesus monkeys. Drug Alcohol Depend 40:81–86

    Article  CAS  PubMed  Google Scholar 

  • Wiley JL, Golden KM, Ryan WJ, Balster RL, Razdan RK, Martin BR (1997) Evaluation of cannabimimetic discriminative stimulus effects of anandamide and methylated fluoroanandamide in rhesus monkeys. Pharmacol Biochem Behav 58:1139–1143

    CAS  PubMed  Google Scholar 

  • Wiley JL, Ryan WJ, Razdan RK, Martin BR (1998) Evaluation of cannabimimetic effects of structural analogs of anandamide in rats. Eur J Pharmacol 355:113–118

    CAS  PubMed  Google Scholar 

  • Wise RA (1987) The role of reward pathways in the development of drug dependence. Pharmacol Ther 35:227–263

    Google Scholar 

  • Wise RA (1996) Addictive drugs and brain stimulation reward. Annu Rev Neurosci 19:319–340

    CAS  PubMed  Google Scholar 

  • Woods JH, Young AM, Herling S (1982) Classification of narcotics on the basis of their reinforcing, discriminative, and antagonist effects in rhesus monkeys. Federal Proceedings 41:221–227

    CAS  Google Scholar 

  • Wu X, French ED (2000) Effects of chronic delta9-tetrahydrocannabinol on rat midbrain dopamine neurons: an electrophysiological assessment. Neuropharmacology 39:391–398

    Article  CAS  PubMed  Google Scholar 

  • Yokel RA (1987) Intravenous self-administration: response rates, the effects of pharmacological challenges, and drug preference. In: Bozarth MA (ed) Methods of assessing the reinforcing properties of abused drugs. Springer, Berlin Heidelberg New York, pp 1–33

  • Young AM, Herling S (1986) Drugs as reinforcers: studies in laboratory animals. In: Goldberg SR, Stolerman IP (eds) Behavioral analysis of drug dependence. Academic Press, Orlando, FL, pp 9–67

  • Young AM, Herling S, Woods JH (1981a) History of drug exposure as a determinant of drug self administration. In: Thompson T, Johanson CE (eds) Behavioral pharmacology of human drug dependence. NIDA research monograph, Washington, DC, 37:75–89

  • Young AM, Herling S, Winger GD, Woods JH (1981b) Comparison of discriminative and reinforcing effects of ketamine and related compounds in the rhesus monkey. In: Harris LS (ed) Problems of drug dependence. NIDA research monograph, Washington, DC, 34:173–179

  • Zhuang S, Kittler J, Grigorenko EV, Kirby MT, Sim LJ, Hampson RE, Childers SR, Deadwyler SA (1998) Effects of long-term exposure to delta9-THC on expression of cannabinoid receptor (CB1) mRNA in different rat brain regions. Brain Res Mol Brain Res 62:141–149

    Article  CAS  PubMed  Google Scholar 

  • Zimmer A, Zimmer AM, Hohmann AG, Herkenham M, Bonner TI (1999) Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc Natl Acad Sci USA 96:5780–5785

    CAS  PubMed  Google Scholar 

  • Zimmer A, Valjent E, Konig M, Zimmer AM, Robledo P, Hahn H, Valverde O, Maldonado R (2001) Absence of Δ-9-tetrahydrocannabinol dysphoric effects in dynorphin-deficient mice. J Neurosci 21:9499–9505

    CAS  PubMed  Google Scholar 

  • Zygmunt PM, Andersson DA, Hogestatt ED (2002) Delta 9-tetrahydrocannabinol and cannabinol activate capsaicin-sensitive sensory nerves via a CB1 and CB2 cannabinoid receptor-independent mechanism. J Neurosci 22:4720–4727

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work supported by the Intramural Research Program of the National Institute on Drug Abuse, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven R. Goldberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanda, G., Goldberg, S.R. Cannabinoids: reward, dependence, and underlying neurochemical mechanisms—a review of recent preclinical data. Psychopharmacology 169, 115–134 (2003). https://doi.org/10.1007/s00213-003-1485-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-003-1485-z

Keywords

Navigation