Skip to main content

Advertisement

Log in

Diabetes and disordered bone metabolism (diabetic osteodystrophy): time for recognition

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Diabetes and osteoporosis are rapidly growing diseases. The link between the high fracture incidence in diabetes as compared with the non-diabetic state has recently been recognized. While this review cannot cover every aspect of diabetic osteodystrophy, it attempts to incorporate current information from the First International Symposium on Diabetes and Bone presentations in Rome in 2014.

Diabetes and osteoporosis are fast-growing diseases in the western world and are becoming a major problem in the emerging economic nations. Aging of populations worldwide will be responsible for an increased risk in the incidence of osteoporosis and diabetes. Furthermore, the economic burden due to complications of these diseases is enormous and will continue to increase unless public awareness of these diseases, the curbing of obesity, and cost-effective measures are instituted. The link between diabetes and fractures being more common in diabetics than non-diabetics has been widely recognized. At the same time, many questions remain regarding the underlying mechanisms for greater bone fragility in diabetic patients and the best approach to risk assessment and treatment to prevent fractures. Although it cannot cover every aspect of diabetic osteodystrophy, this review will attempt to incorporate current information particularly from the First International Symposium on Diabetes and Bone presentations in Rome in November 2014.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Epidemiology | International Osteoporosis Foundation (2015) http://www.iofbonehealth.org/epidemiology

  2. Leslie WD, Rubin MR, Schwartz AV, Kanis JA (2012) Type 2 diabetes and bone. J Bone Miner Res 27:2231–2237. doi:10.1002/jbmr.1759

    Article  PubMed  Google Scholar 

  3. B A (2014) The epidemiology of diabetes and fracture first international symposium on diabetes and bone, Rome

  4. Lochner KA, Cox CS (2013) Prevalence of multiple chronic conditions among Medicare beneficiaries, United States, 2010. Prev Chronic Dis 10:E61. doi:10.5888/pcd10.120137

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dede AD, Tournis S, Dontas I, Trovas G (2014) Type 2 diabetes mellitus and fracture risk. Metab Clin Exp 63:1480–1490. doi:10.1016/j.metabol.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  6. Napoli N, Strotmeyer ES, Ensrud KE, Sellmeyer DE, Bauer DC, Hoffman AR, Dam TT, Barrett-Connor E, Palermo L, Orwoll ES, Cummings SR, Black DM, Schwartz AV (2014) Fracture risk in diabetic elderly men: the MrOS study. Diabetologia 57(10):2057–2065. doi:10.1007/s00125-014-3289-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nicola Napoli AS, Anne Schafer, Peggy Cawthon, Neeta Parimi, Joseph M. Zmuda, Eric S. Orwoll, Andrew R. Hoffman, Elsa Strotmeyer, Elizabeth Barrett-Connor, Dennis M. Black (2015) Vertebral fracture risk in diabetic elderly men: the MrOS study. In: ASBMR 2015 Annual Meeting, Seattle, Washington, USA

  8. Bo Abrahamsen BR, Daniel Prieto-Alhambra, Nicola Napoli, Cyrus Cooper (2015) Age at first major osteoporotic fracture in danes aged 50 and over: influence of diabetes on mean age at fracture and one year mortality. In: ASBMR 2015 Annual Meeting, Seattle, Washington, USA

  9. Vinik AI, Vinik EJ, Colberg SR, Morrison S (2014) Falls risk in older adults with type 2 diabetes. Clin Geriatr Med 31:89–99. doi:10.1016/j.cger.2014.09.002, viii

    Article  PubMed  Google Scholar 

  10. Abrahamsen B, Osmond C, Cooper C (2015) Life expectancy in patients treated for osteoporosis: observational cohort study using national danish prescription data. J Bone Miner Res

  11. Schaffler MB, Burr DB (1988) Stiffness of compact bone: effects of porosity and density. J Biomech 21:13–16

    Article  CAS  PubMed  Google Scholar 

  12. Patsch JM, Burghardt AJ, Yap SP, Baum T, Schwartz AV, Joseph GB, Link TM (2012) Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res 28:313–324. doi:10.1002/jbmr.1763

    Article  Google Scholar 

  13. Farr JN, Drake MT, Amin S, Melton LJ 3rd, McCready LK, Khosla S (2014) In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res 29(4):787–795. doi:10.1002/jbmr.2106

  14. Samelson E, Bouxsein M, Brochin E, Meng CA, Hogan M, Carroll D, McLean R, Hannan M, Cupples LA, Fox C, Kiel D (2014). Proceedings title: Deficits in cortical bone density and microstructure in type 2 diabetes: framingham HR-pQCT study. ASBMR 2014, Annual meeting, Houston

  15. Heilmeier U, Carpenter DR, Patsch JM, Harnish R, Joseph GB, Burghardt AJ, Baum T, Schwartz AV, Lang TF, Link TM (2015) Volumetric femoral BMD, bone geometry, and serum sclerostin levels differ between type 2 diabetic postmenopausal women with and without fragility fractures. Osteoporos Int 26:1283–1293. doi:10.1007/s00198-014-2988-7

    Article  CAS  PubMed  Google Scholar 

  16. Kim JH, Choi HJ, Ku EJ, Kim KM, Kim SW, Cho NH, Shin CS (2015) Trabecular bone score as an indicator for skeletal deterioration in diabetes. J Clin Endocrinol Metab 100(2):475–482. doi:10.1210/jc.2014-2047

    Article  CAS  PubMed  Google Scholar 

  17. Leslie WD, Aubry-Rozier B, Lamy O, Hans D, Manitoba Bone Density P (2013) TBS (trabecular bone score) and diabetes-related fracture risk. J Clin Endocrinol Metab 98(2):602–609. doi:10.1210/jc.2012-3118

    Article  CAS  PubMed  Google Scholar 

  18. Napoli N, Strollo R, Paladini A, Briganti SI, Pozzilli P, Epstein S (2014) The alliance of mesenchymal stem cells, bone, and diabetes. Int J Endocrinol 2014:690783. doi:10.1155/2014/690783

    PubMed  PubMed Central  Google Scholar 

  19. Schwartz AV, Sellmeyer DE (2007) Diabetes, fracture, and bone fragility. Curr Osteoporos Rep 5(3):105–111

    Article  PubMed  Google Scholar 

  20. Singh R, Barden A, Mori T, Beilin L (2001) Advanced glycation end-products: a review. Diabetologia 44(2):129–146. doi:10.1007/s001250051591

    Article  CAS  PubMed  Google Scholar 

  21. Viguet-Carrin S, Roux JP, Arlot ME, Merabet Z, Leeming DJ, Byrjalsen I, Delmas PD, Bouxsein ML (2006) Contribution of the advanced glycation end product pentosidine and of maturation of type I collagen to compressive biomechanical properties of human lumbar vertebrae. Bone 39(5):1073–1079. doi:10.1016/j.bone.2006.05.013

    Article  CAS  PubMed  Google Scholar 

  22. Strollo R, Rizzo P, Spoletini M, Landy R, Hughes C, Ponchel F, Napoli N, Palermo A, Buzzetti R, Pozzilli P, Nissim A (2013) HLA-dependent autoantibodies against post-translationally modified collagen type II in type 1 diabetes mellitus. Diabetologia 56(3):563–572. doi:10.1007/s00125-012-2780-1

    Article  CAS  PubMed  Google Scholar 

  23. Yamamoto M, Yamaguchi T, Yamauchi M, Yano S, Sugimoto T (2008) Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab 93(3):1013–1019. doi:10.1210/jc.2007-1270

    Article  CAS  PubMed  Google Scholar 

  24. Sanguineti R, Storace D, Monacelli F, Federici A, Odetti P (2008) Pentosidine effects on human osteoblasts in vitro. Ann N Y Acad Sci 1126:166–172. doi:10.1196/annals.1433.044

    Article  CAS  PubMed  Google Scholar 

  25. McCarthy AD, Uemura T, Etcheverry SB, Cortizo AM (2004) Advanced glycation endproducts interefere with integrin-mediated osteoblastic attachment to a type-I collagen matrix. Int J Biochem Cell Biol 36(5):840–848. doi:10.1016/j.biocel.2003.09.006

    Article  CAS  PubMed  Google Scholar 

  26. Kume S, Kato S, Yamagishi S, Inagaki Y, Ueda S, Arima N, Okawa T, Kojiro M, Nagata K (2005) Advanced glycation end-products attenuate human mesenchymal stem cells and prevent cognate differentiation into adipose tissue, cartilage, and bone. J Bone Miner Res 20(9):1647–1658. doi:10.1359/JBMR.050514

    Article  CAS  PubMed  Google Scholar 

  27. Manigrasso MB, Juranek J, Ramasamy R, Schmidt AM (2014) Unlocking the biology of RAGE in diabetic microvascular complications. Trends Endocrinol Metab 25(1):15–22. doi:10.1016/j.tem.2013.08.002

    Article  CAS  PubMed  Google Scholar 

  28. Hein GE (2006) Glycation endproducts in osteoporosis—is there a pathophysiologic importance? Clin Chim Acta 371(1):32–36

    Article  CAS  PubMed  Google Scholar 

  29. Botolin S, McCabe LR (2006) Chronic hyperglycemia modulates osteoblast gene expression through osmotic and non-osmotic pathways. J Cell Biochem 99(2):411–424. doi:10.1002/jcb.20842

    Article  CAS  PubMed  Google Scholar 

  30. Balint E, Szabo P, Marshall CF, Sprague SM (2001) Glucose-induced inhibition of in vitro bone mineralization. Bone 28(1):21–28

    Article  CAS  PubMed  Google Scholar 

  31. McCabe LR (2007) Understanding the pathology and mechanisms of type I diabetic bone loss. J Cell Biochem 102(6):1343–1357. doi:10.1002/jcb.21573

    Article  CAS  PubMed  Google Scholar 

  32. Palermo A, D’Onofrio L, Eastell R, Schwartz AV, Pozzilli P, Napoli N (2015) Oral anti-diabetic drugs and fracture risk, cut to the bone: safe or dangerous? A narrative review. Osteoporos Int 26(8):2073–2089. doi:10.1007/s00198-015-3123-0

    Article  CAS  PubMed  Google Scholar 

  33. Villareal DT, Chode S, Parimi N, Sinacore DR, Hilton T, Armamento-Villareal R, Napoli N, Qualls C, Shah K (2011) Weight loss, exercise, or both and physical function in obese older adults. N Engl J Med 364(13):1218–1229. doi:10.1056/NEJMoa1008234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shah K, Armamento-Villareal R, Parimi N, Chode S, Sinacore DR, Hilton TN, Napoli N, Qualls C, Villareal DT (2011) Exercise training in obese older adults prevents increase in bone turnover and attenuates decrease in hip bone mineral density induced by weight loss despite decline in bone-active hormones. J Bone Miner Res 26(12):2851–2859. doi:10.1002/jbmr.475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thrailkill KM, Clay Bunn R, Nyman JS, Rettiganti MR, Cockrell GE, Wahl EC, Uppuganti S, Lumpkin CK Jr, Fowlkes JL (2015) SGLT2 inhibitor therapy improves blood glucose but does not prevent diabetic bone disease in diabetic DBA/2J male mice. Bone. doi:10.1016/j.bone.2015.07.025

    PubMed  Google Scholar 

  36. INVOKANA (canagliflozin) (2013). Janssen Pharmaceuticals, Titusville, NJ, USA

  37. Taylor SI, Blau JE, Rother KI (2015) Possible adverse effects of SGLT2 inhibitors on bone. Lancet Diab Endocrinol 3(1):8–10. doi:10.1016/s2213-8587(14)70227-x

    Article  CAS  Google Scholar 

  38. Epstein S (1988) Serum and urinary markers of bone remodeling: assessment of bone turnover. Endocr Rev 9(4):437–449

    Article  CAS  PubMed  Google Scholar 

  39. Wu K, Schubeck K, Frost H, Villanueva A (1970) Haversian bone formation rates determined by a new method in a mastodon, and in human diabetes mellitus and osteoporosis. Calcif Tissue Res 6(1):204–219

    Article  CAS  PubMed  Google Scholar 

  40. Jesse C, Krakauer MJM, Nancy Fenn Buderer, D. Sudhaker Rao, Fred W. Whitehouse aAMP (1995) Bone loss and bone turnover in diabetes 95.pdf. 44 (july 1)

  41. Leite DM, Da Silva R (1995) Histomorphometric analysis of the bone tissue in patients with non-insulin-dependent diabetes (DMNID). Rev Hosp Clin 51(1):7–11

    Google Scholar 

  42. Armas LA, Akhter MP, Drincic A, Recker RR (2012) Trabecular bone histomorphometry in humans with type 1 diabetes mellitus. Bone 50(1):91–96. doi:10.1016/j.bone.2011.09.055

    Article  PubMed  PubMed Central  Google Scholar 

  43. Starup-Linde J, Vestergaard P (2015) Biochemical bone turnover markers in diabetes mellitus—a systematic review. Bone. doi:10.1016/j.bone.2015.02.019

    Google Scholar 

  44. Hypponen E, Laara E, Reunanen A, Jarvelin MR, Virtanen SM (2001) Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet 358(9292):1500–1503. doi:10.1016/S0140-6736(01)06580-1

    Article  CAS  PubMed  Google Scholar 

  45. Sheth JJ, Shah A, Sheth FJ, Trivedi S, Lele M, Shah N, Thakor P, Vaidya R (2015) Does vitamin D play a significant role in type 2 diabetes? BMC Endocr Disord 15 (1). doi:10.1186/s12902-015-0003-8

  46. Mathieu C (2015) Vitamin D and diabetes: where do we stand? Diabetes Res Clin Pract 108(2):201–209. doi:10.1016/j.diabres.2015.01.036

    Article  CAS  PubMed  Google Scholar 

  47. Girgis CM, Baldock PA, Downes M (2015) Vitamin D, muscle and bone: integrating effects in development, aging and injury. Mol Cell Endocrinol 410:3–10. doi:10.1016/j.mce.2015.03.020

    Article  CAS  PubMed  Google Scholar 

  48. Chaiban JT, Nicolas KG (2015) Diabetes and bone: still a lot to learn. Clin Rev Bone Miner Metab 13(1):20–35

    Article  CAS  Google Scholar 

  49. Somjen D, Knoll E, Sharon O, Many A, Stern N (2015) Calciotrophic hormones and hyperglycemia modulate vitamin D receptor and 25 hydroxyy vitamin D 1-alpha hydroxylase mRNA expression in human vascular smooth muscle cells. J Steroid Biochem Mol Biol 148:210–213. doi:10.1016/j.jsbmb.2014.11.007

    Article  CAS  PubMed  Google Scholar 

  50. Davidson MB, Duran P, Lee ML, Friedman TC (2013) High-dose vitamin D supplementation in people with prediabetes and hypovitaminosis D. Diabetes Care 36(2):260–266. doi:10.2337/dc12-1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Issa CM, Zantout MS, Azar ST (2015) Vitamin D replacement and type 2 diabetes mellitus. Curr Diabetes Rev 11(1):7–16

    Article  CAS  PubMed  Google Scholar 

  52. Noordzij M, Kramer A, Abad Diez JM, Alonso de la Torre R, Arcos Fuster E, Bikbov BT, Bonthuis M, Bouzas Caamano E, Cala S, Caskey FJ, Castro de la Nuez P, Cernevskis H, Collart F, Diaz Tejeiro R, Djukanovic L, Ferrer-Alamar M, Finne P, Garcia Bazaga Mde L, Garneata L, Golan E, Gonzalez Fernandez R, Heaf JG, Hoitsma A, Ioannidis GA, Kolesnyk M, Kramar R, Lasalle M, Leivestad T, Lopot F, van de Luijtgaarden MW, Macario F, Magaz A, Martin Escobar E, de Meester J, Metcalfe W, Ots-Rosenberg M, Palsson R, Pinera C, Pippias M, Prutz KG, Ratkovic M, Resic H, Rodriguez Hernandez A, Rutkowski B, Spustova V, Stel VS, Stojceva-Taneva O, Suleymanlar G, Wanner C, Jager KJ (2014) Renal replacement therapy in Europe: a summary of the 2011 ERA-EDTA registry annual report. Clin Kidney J 7(2):227–238. doi:10.1093/ckj/sfu007

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dissanayake IR, Goodman GR, Bowman AR, Ma Y, Pun S, Jee WS, Epstein S (1998) Mycophenolate mofetil: a promising new immunosuppressant that does not cause bone loss in the rat. Transplantation 65(2):275–278

    Article  CAS  PubMed  Google Scholar 

  54. Nikkel LE, Iyer SP, Mohan S, Zhang A, McMahon DJ, Tanriover B, Cohen DJ, Ratner L, Hollenbeak CS, Rubin MR, Shane E, Nickolas TL (2013) Pancreas-kidney transplantation is associated with reduced fracture risk compared with kidney-alone transplantation in men with type 1 diabetes. Kidney Int 83(3):471–478. doi:10.1038/ki.2012.430

    Article  PubMed  PubMed Central  Google Scholar 

  55. Park SC, Yoon YD, Jung HY, Kim KH, Choi JY, Park SH, Kim CD, Kim YL, Kim HK, Huh S, Cho JH (2015) Effect of transient post-transplantation hyperglycemia on the development of diabetes mellitus and transplantation outcomes in kidney transplant recipients. Transplant Proc 47(3):666–671. doi:10.1016/j.transproceed.2014.11.053

    Article  PubMed  Google Scholar 

  56. Suarez O, Pardo M, Gonzalez S, Escobar-Serna DP, Castaneda DA, Rodriguez D, Osorio JC, Lozano E (2014) Diabetes mellitus and renal transplantation in adults: is there enough evidence for diagnosis, treatment, and prevention of new-onset diabetes after renal transplantation? Transplant Proc 46(9):3015–3020. doi:10.1016/j.transproceed.2014.07.011

    Article  CAS  PubMed  Google Scholar 

  57. Courivaud C, Ladriere M, Toupance O, Caillard S, Hurault de Ligny B, Ryckelynck JP, Moulin B, Rieu P, Frimat L, Chalopin JM, Chauve S, Kazory A, Ducloux D (2011) Impact of pre-transplant dialysis modality on post-transplant diabetes mellitus after kidney transplantation. Clin Transpl 25(5):794–799. doi:10.1111/j.1399-0012.2010.01367.x

    Article  Google Scholar 

  58. Demirci MS, Toz H, Yilmaz F, Ertilav M, Asci G, Ozkahya M, Zeytinoglu A, Nart D, Ok E (2010) Risk factors and consequences of post-transplant diabetes mellitus. Clin Transpl 24(5):E170–E177. doi:10.1111/j.1399-0012.2010.01247.x

    Article  Google Scholar 

  59. Cotovio P, Neves M, Rodrigues L, Alves R, Bastos M, Baptista C, Macario F, Mota A (2013) New-onset diabetes after transplantation: assessment of risk factors and clinical outcomes. Transplant Proc 45(3):1079–1083. doi:10.1016/j.transproceed.2013.03.009

    Article  CAS  PubMed  Google Scholar 

  60. Valderhaug TG, Jenssen T, Hartmann A, Midtvedt K, Holdaas H, Reisaeter AV, Hjelmesaeth J (2009) Fasting plasma glucose and glycosylated hemoglobin in the screening for diabetes mellitus after renal transplantation. Transplantation 88(3):429–434. doi:10.1097/TP.0b013e3181af1f53

    Article  PubMed  Google Scholar 

  61. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM, Diabetes Prevention Program Research G (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346(6):393–403. doi:10.1056/NEJMoa012512

    Article  CAS  PubMed  Google Scholar 

  62. Stevens RB, Lane JT, Boerner BP, Miles CD, Rigley TH, Sandoz JP, Nielsen KJ, Skorupa JY, Skorupa AJ, Kaplan B, Wrenshall LE (2012) Single-dose rATG induction at renal transplantation: superior renal function and glucoregulation with less hypomagnesemia. Clin Transpl 26(1):123–132. doi:10.1111/j.1399-0012.2011.01425.x

    Article  CAS  Google Scholar 

  63. Busque S, Cantarovich M, Mulgaonkar S, Gaston R, Gaber AO, Mayo PR, Ling S, Huizinga RB, Meier-Kriesche HU, Investigators P (2011) The PROMISE study: a phase 2b multicenter study of voclosporin (ISA247) versus tacrolimus in de novo kidney transplantation. Am J Transplant 11(12):2675–2684. doi:10.1111/j.1600-6143.2011.03763.x

    Article  CAS  PubMed  Google Scholar 

  64. Al-Ghareeb SM, El-Agroudy AE, Al Arrayed SM, Al Arrayed A, Alhellow HA (2012) Risk factors and outcomes of new-onset diabetes after transplant: single-centre experience. Exp Clin Transplant 10(5):458–465. doi:10.6002/ect.2012.0063

    Article  PubMed  Google Scholar 

  65. Luan FL, Steffick DE, Ojo AO (2011) New-onset diabetes mellitus in kidney transplant recipients discharged on steroid-free immunosuppression. Transplantation 91(3):334–341. doi:10.1097/TP.0b013e318203c25f

    Article  CAS  PubMed  Google Scholar 

  66. Vincenti F, Friman S, Scheuermann E, Rostaing L, Jenssen T, Campistol JM, Uchida K, Pescovitz MD, Marchetti P, Tuncer M, Citterio F, Wiecek A, Chadban S, El-Shahawy M, Budde K, Goto N, Investigators D (2007) Results of an international, randomized trial comparing glucose metabolism disorders and outcome with cyclosporine versus tacrolimus. Am J Transplant 7(6):1506–1514. doi:10.1111/j.1600-6143.2007.01749.x

    Article  CAS  PubMed  Google Scholar 

  67. Veroux M, Corona D, Giuffrida G, Gagliano M, Sorbello M, Virgilio C, Tallarita T, Zerbo D, Giaquinta A, Fiamingo P, Macarone M, Li Volti G, Caglia P, Veroux P (2008) New-onset diabetes mellitus after kidney transplantation: the role of immunosuppression. Transplant Proc 40(6):1885–1887. doi:10.1016/j.transproceed.2008.06.005

    Article  CAS  PubMed  Google Scholar 

  68. Rodrigo E, Santos L, Pinera C, Millan JC, Quintela ME, Toyos C, Allende N, Gomez-Alamillo C, Arias M (2012) Prediction at first year of incident new-onset diabetes after kidney transplantation by risk prediction models. Diabetes Care 35(3):471–473. doi:10.2337/dc11-2071

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cole EH, Prasad GV, Cardella CJ, Kim JS, Tinckam KJ, Cattran DC, Schiff JR, Landsberg DN, Zaltzman JS, Gill JS (2013) A pilot study of reduced dose cyclosporine and corticosteroids to reduce new onset diabetes mellitus and acute rejection in kidney transplant recipients. Transplant Res 2(1):1. doi:10.1186/2047-1440-2-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Santos L, Rodrigo E, Pinera C, Quintella E, Ruiz JC, Fernandez-Fresnedo G, Palomar R, Gomez-Alamillo C, de Francisco A, Arias M (2012) New-onset diabetes after transplantation: drug-related risk factors. Transplant Proc 44(9):2585–2587. doi:10.1016/j.transproceed.2012.09.053

    Article  CAS  PubMed  Google Scholar 

  71. Davidson J, Wilkinson A, Dantal J, Dotta F, Haller H, Hernandez D, Kasiske BL, Kiberd B, Krentz A, Legendre C, Marchetti P, Markell M, van der Woude FJ, Wheeler DC, International Expert Panel (2003) New-onset diabetes after transplantation: 2003 International consensus guidelines. Proceedings of an international expert panel meeting. Barcelona, Spain, 19 February 2003. Transplantation 75(10 Suppl):SS3–SS24. doi:10.1097/01.TP.0000069952.49242.3E

    PubMed  Google Scholar 

  72. Darstein F, Konig C, Hoppe-Lotichius M, Grimm D, Knapstein J, Zimmermann A, Mittler J, Schattenberg JM, Sprinzl MF, Worns MA, Lang H, Galle PR, Zimmermann T (2015) New onset of diabetes after transplantation is associated with improved patient survival after liver transplantation due to confounding factor. Eur J Intern Med. doi:10.1016/j.ejim.2015.05.018

    PubMed  Google Scholar 

  73. Lv C, Zhang Y, Chen X, Huang X, Xue M, Sun Q, Wang T, Liang J, He S, Gao J, Zhou J, Yu M, Fan J, Gao X (2015) New-onset diabetes after liver transplantation and its impact on complications and patient survival. J Diabetes. doi:10.1111/1753-0407.12275

    Google Scholar 

  74. Wei J, Karsenty G (2015) An overview of the metabolic functions of osteocalcin. Curr Osteoporos Rep 13(3):180–185. doi:10.1007/s11914-015-0267-y

    Article  PubMed  Google Scholar 

  75. Sadie-Van Gijsen H, Crowther NJ, Hough FS, Ferris WF (2013) The interrelationship between bone and fat: from cellular see-saw to endocrine reciprocity. Cell Mol Life Sci 70(13):2331–2349. doi:10.1007/s00018-012-1211-2

    Article  CAS  PubMed  Google Scholar 

  76. Kim JY, Lee SK, Jo KJ, Song DY, Lim DM, Park KY, Bonewald LF, Kim BJ (2013) Exendin-4 increases bone mineral density in type 2 diabetic OLETF rats potentially through the down-regulation of SOST/sclerostin in osteocytes. Life Sci 92(10):533–540. doi:10.1016/j.lfs.2013.01.001

    Article  PubMed  CAS  Google Scholar 

  77. Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, Wang H, Cundy T, Glorieux FH, Lev D, Zacharin M, Oexle K, Marcelino J, Suwairi W, Heeger S, Sabatakos G, Apte S, Adkins WN, Allgrove J, Arslan-Kirchner M, Batch JA, Beighton P, Black GC, Boles RG, Boon LM, Borrone C, Brunner HG, Carle GF, Dallapiccola B, De Paepe A, Floege B, Halfhide ML, Hall B, Hennekam RC, Hirose T, Jans A, Juppner H, Kim CA, Keppler-Noreuil K, Kohlschuetter A, LaCombe D, Lambert M, Lemyre E, Letteboer T, Peltonen L, Ramesar RS, Romanengo M, Somer H, Steichen-Gersdorf E, Steinmann B, Sullivan B, Superti-Furga A, Swoboda W, van den Boogaard MJ, Van Hul W, Vikkula M, Votruba M, Zabel B, Garcia T, Baron R, Olsen BR, Warman ML, Osteoporosis-Pseudoglioma Syndrome Collaborative G (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107(4):513–523

    Article  CAS  PubMed  Google Scholar 

  78. Little RD, Carulli JP, Del Mastro RG, Dupuis J, Osborne M, Folz C, Manning SP, Swain PM, Zhao SC, Eustace B, Lappe MM, Spitzer L, Zweier S, Braunschweiger K, Benchekroun Y, Hu X, Adair R, Chee L, FitzGerald MG, Tulig C, Caruso A, Tzellas N, Bawa A, Franklin B, McGuire S, Nogues X, Gong G, Allen KM, Anisowicz A, Morales AJ, Lomedico PT, Recker SM, Van Eerdewegh P, Recker RR, Johnson ML (2002) A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. In: Am J Hum Genet, vol 70. vol 1. United States, pp 11–19. doi:10.1086/338450

  79. Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME (2006) Playing with bone and fat. J Cell Biochem 98(2):251–266

    Article  CAS  PubMed  Google Scholar 

  80. Bennett CN, Ross SE, Longo KA, Bajnok L, Hemati N, Johnson KW, Harrison SD, MacDougald OA (2002) Regulation of Wnt signaling during adipogenesis. J Biol Chem 277(34):30998–31004

    Article  CAS  PubMed  Google Scholar 

  81. Ross SE, Erickson RL, Gerin I, DeRose PM, Bajnok L, Longo KA, Misek DE, Kuick R, Hanash SM, Atkins KB, Andresen SM, Nebb HI, Madsen L, Kristiansen K, MacDougald OA (2002) Microarray analyses during adipogenesis: understanding the effects of Wnt signaling on adipogenesis and the roles of liver X receptor alpha in adipocyte metabolism. Mol Cell Biol 22(16):5989–5999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Baron R, Kneissel M (2013) WNT signaling in bone homeostasis and disease: from human mutations to treatments. In: Nat Med, vol 19. vol 2. United States, pp 179–192. doi:10.1038/nm.3074

  83. Hu H, Hilton MJ, Tu X, Yu K, Ornitz DM, Long F (2005) Sequential roles of Hedgehog and Wnt signaling in osteoblast development. In: Development, vol 132. vol 1. England, pp 49–60. doi:10.1242/dev.01564

  84. Portal-Nunez S, Lozano D, de Castro LF, de Gortazar AR, Nogues X, Esbrit P (2010) Alterations of the Wnt/beta-catenin pathway and its target genes for the N- and C-terminal domains of parathyroid hormone-related protein in bone from diabetic mice. In: FEBS Lett, vol 584. vol 14. 2010 Federation of European Biochemical Societies. Published by Elsevier B.V, Netherlands, pp 3095–3100. doi:10.1016/j.febslet.2010.05.047

  85. Canalis E, Giustina A, Bilezikian JP (2007) Mechanisms of anabolic therapies for osteoporosis. In: N Engl J Med, vol 357. vol 9. United States, pp 905–916. doi:10.1056/NEJMra067395

  86. Zhou YJ, Li A, Song YL, Zhou H, Li Y, Tang YS (2013) Role of sclerostin in the bone loss of postmenopausal chinese women with type 2 diabetes. In: Chin Med Sci J, vol 28. vol 3. China, pp 135–139

  87. Catalano A, Pintaudi B, Morabito N, Di Vieste G, Giunta L, Bruno ML, Cucinotta D, Lasco A, Di Benedetto A (2014) Gender differences in sclerostin and clinical characteristics in type 1 diabetes mellitus. In: Eur J Endocrinol, vol 171. vol 3. 2014 European Society of Endocrinology., England, pp 293–300. doi:10.1530/eje-14-0106

  88. Gaudio A, Privitera F, Pulvirenti I, Canzonieri E, Rapisarda R, Fiore CE (2014) The relationship between inhibitors of the Wnt signalling pathway (sclerostin and Dickkopf-1) and carotid intima-media thickness in postmenopausal women with type 2 diabetes mellitus. In: Diab Vasc Dis Res, vol 11. vol 1. England, pp 48–52. doi:10.1177/1479164113510923

  89. Hage MP, El-Hajj Fuleihan G (2014) Bone and mineral metabolism in patients undergoing Roux-en-Y gastric bypass. Osteoporos Int 25(2):423–439. doi:10.1007/s00198-013-2480-9

    Article  CAS  PubMed  Google Scholar 

  90. Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, Ghatei MA, Bloom SR (2003) Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med 349(10):941–948. doi:10.1056/NEJMoa030204

    Article  CAS  PubMed  Google Scholar 

  91. le Roux CW, Batterham RL, Aylwin SJ, Patterson M, Borg CM, Wynne KJ, Kent A, Vincent RP, Gardiner J, Ghatei MA, Bloom SR (2006) Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology 147(1):3–8. doi:10.1210/en.2005-0972

    Article  PubMed  CAS  Google Scholar 

  92. Batterham RL, Bloom SR (2003) The gut hormone peptide YY regulates appetite. Ann N Y Acad Sci 994:162–168

    Article  CAS  PubMed  Google Scholar 

  93. Misra M, Miller KK, Tsai P, Gallagher K, Lin A, Lee N, Herzog DB, Klibanski A (2006) Elevated peptide YY levels in adolescent girls with anorexia nervosa. J Clin Endocrinol Metab 91(3):1027–1033. doi:10.1210/jc.2005-1878

    Article  CAS  PubMed  Google Scholar 

  94. Russell M, Stark J, Nayak S, Miller KK, Herzog DB, Klibanski A, Misra M (2009) Peptide YY in adolescent athletes with amenorrhea, eumenorrheic athletes and non-athletic controls. Bone 45(1):104–109. doi:10.1016/j.bone.2009.03.668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Baldock PA, Sainsbury A, Couzens M, Enriquez RF, Thomas GP, Gardiner EM, Herzog H (2002) Hypothalamic Y2 receptors regulate bone formation. J Clin Invest 109(7):915–921. doi:10.1172/JCI14588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wortley KE, Garcia K, Okamoto H, Thabet K, Anderson KD, Shen V, Herman JP, Valenzuela D, Yancopoulos GD, Tschop MH, Murphy A, Sleeman MW (2007) Peptide YY regulates bone turnover in rodents. Gastroenterology 133(5):1534–1543. doi:10.1053/j.gastro.2007.08.024

    Article  CAS  PubMed  Google Scholar 

  97. Dirksen C, Jorgensen NB, Bojsen-Moller KN, Jacobsen SH, Hansen DL, Worm D, Holst JJ, Madsbad S (2012) Mechanisms of improved glycaemic control after Roux-en-Y gastric bypass. Diabetologia 55(7):1890–1901. doi:10.1007/s00125-012-2556-7

    Article  CAS  PubMed  Google Scholar 

  98. Tsukiyama K, Yamada Y, Yamada C, Harada N, Kawasaki Y, Ogura M, Bessho K, Li M, Amizuka N, Sato M, Udagawa N, Takahashi N, Tanaka K, Oiso Y, Seino Y (2006) Gastric inhibitory polypeptide as an endogenous factor promoting new bone formation after food ingestion. Mol Endocrinol 20(7):1644–1651. doi:10.1210/me.2005-0187

    Article  CAS  PubMed  Google Scholar 

  99. Bollag RJ, Zhong Q, Phillips P, Min L, Zhong L, Cameron R, Mulloy AL, Rasmussen H, Qin F, Ding KH, Isales CM (2000) Osteoblast-derived cells express functional glucose-dependent insulinotropic peptide receptors. Endocrinology 141(3):1228–1235. doi:10.1210/endo.141.3.7366

    CAS  PubMed  Google Scholar 

  100. Zhong Q, Itokawa T, Sridhar S, Ding KH, Xie D, Kang B, Bollag WB, Bollag RJ, Hamrick M, Insogna K, Isales CM (2007) Effects of glucose-dependent insulinotropic peptide on osteoclast function. Am J Physiol Endocrinol Metab 292(2):E543–E548. doi:10.1152/ajpendo.00364.2006

    Article  CAS  PubMed  Google Scholar 

  101. Xie D, Cheng H, Hamrick M, Zhong Q, Ding KH, Correa D, Williams S, Mulloy A, Bollag W, Bollag RJ, Runner RR, McPherson JC, Insogna K, Isales CM (2005) Glucose-dependent insulinotropic polypeptide receptor knockout mice have altered bone turnover. Bone 37(6):759–769. doi:10.1016/j.bone.2005.06.021

    Article  CAS  PubMed  Google Scholar 

  102. Rao RS, Kini S (2011) GIP and bariatric surgery. Obes Surg 21(2):244–252. doi:10.1007/s11695-010-0305-x

    Article  PubMed  Google Scholar 

  103. Napoli N, Pedone C, Pozzilli P, Lauretani F, Bandinelli S, Ferrucci L, Incalzi RA (2011) Effect of ghrelin on bone mass density: the InChianti study. Bone 49(2):257–263. doi:10.1016/j.bone.2011.03.772

    Article  CAS  PubMed  Google Scholar 

  104. Deng F, Ling J, Ma J, Liu C, Zhang W (2008) Stimulation of intramembranous bone repair in rats by ghrelin. Exp Physiol 93(7):872–879. doi:10.1113/expphysiol.2007.041962

    Article  CAS  PubMed  Google Scholar 

  105. Fukushima N, Hanada R, Teranishi H, Fukue Y, Tachibana T, Ishikawa H, Takeda S, Takeuchi Y, Fukumoto S, Kangawa K, Nagata K, Kojima M (2005) Ghrelin directly regulates bone formation. J Bone Miner Res 20(5):790–798. doi:10.1359/JBMR.041237

    Article  CAS  PubMed  Google Scholar 

  106. Maccarinelli G, Sibilia V, Torsello A, Raimondo F, Pitto M, Giustina A, Netti C, Cocchi D (2005) Ghrelin regulates proliferation and differentiation of osteoblastic cells. J Endocrinol 184(1):249–256. doi:10.1677/joe.1.05837

    Article  CAS  PubMed  Google Scholar 

  107. Biver E, Salliot C, Combescure C, Gossec L, Hardouin P, Legroux-Gerot I, Cortet B (2011) Influence of adipokines and ghrelin on bone mineral density and fracture risk: a systematic review and meta-analysis. J Clin Endocrinol Metab 96(9):2703–2713. doi:10.1210/jc.2011-0047

    Article  CAS  PubMed  Google Scholar 

  108. Cummings DE, Weigle DS, Frayo RS, Breen PA, Ma MK, Dellinger EP, Purnell JQ (2002) Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med 346(21):1623–1630. doi:10.1056/NEJMoa012908

    Article  PubMed  Google Scholar 

  109. Pories WJ (2008) Ghrelin? Yes, it is spelled correctly. Ann Surg 247(3):408–410. doi:10.1097/SLA.0b013e3181663421

    Article  PubMed  Google Scholar 

  110. Gutniak M, Orskov C, Holst JJ, Ahren B, Efendic S (1992) Antidiabetogenic effect of glucagon-like peptide-1 (7–36)amide in normal subjects and patients with diabetes mellitus. N Engl J Med 326(20):1316–1322. doi:10.1056/NEJM199205143262003

    Article  CAS  PubMed  Google Scholar 

  111. Farilla L, Bulotta A, Hirshberg B, Li Calzi S, Khoury N, Noushmehr H, Bertolotto C, Di Mario U, Harlan DM, Perfetti R (2003) Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology 144(12):5149–5158. doi:10.1210/en.2003-0323

    Article  CAS  PubMed  Google Scholar 

  112. Nuche-Berenguer B, Portal-Nunez S, Moreno P, Gonzalez N, Acitores A, Lopez-Herradon A, Esbrit P, Valverde I, Villanueva-Penacarrillo ML (2010) Presence of a functional receptor for GLP-1 in osteoblastic cells, independent of the cAMP-linked GLP-1 receptor. J Cell Physiol 225(2):585–592. doi:10.1002/jcp.22243

    Article  CAS  PubMed  Google Scholar 

  113. Nuche-Berenguer B, Moreno P, Esbrit P, Dapia S, Caeiro JR, Cancelas J, Haro-Mora JJ, Villanueva-Penacarrillo ML (2009) Effect of GLP-1 treatment on bone turnover in normal, type 2 diabetic, and insulin-resistant states. Calcif Tissue Int 84(6):453–461. doi:10.1007/s00223-009-9220-3

    Article  CAS  PubMed  Google Scholar 

  114. Bunck MC, Corner A, Eliasson B, Heine RJ, Shaginian RM, Taskinen MR, Smith U, Yki-Jarvinen H, Diamant M (2011) Effects of exenatide on measures of beta-cell function after 3 years in metformin-treated patients with type 2 diabetes. Diabetes Care 34(9):2041–2047. doi:10.2337/dc11-0291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Villa I, Rubinacci A, Ravasi F, Ferrara AF, Guidobono F (1997) Effects of amylin on human osteoblast-like cells. Peptides 18(4):537–540

    Article  CAS  PubMed  Google Scholar 

  116. Pietschmann P, Farsoudi KH, Hoffmann O, Klaushofer K, Horandner H, Peterlik M (1993) Inhibitory effect of amylin on basal and parathyroid hormone-stimulated bone resorption in cultured neonatal mouse calvaria. Bone 14(2):167–172

    Article  CAS  PubMed  Google Scholar 

  117. Cornish J, Callon KE, King AR, Cooper GJ, Reid IR (1998) Systemic administration of amylin increases bone mass, linear growth, and adiposity in adult male mice. Am J Physiol 275(4 Pt 1):E694–E699

    CAS  PubMed  Google Scholar 

  118. Zaidi M, Shankar VS, Huang CL, Pazianas M, Bloom SR (1993) Amylin in bone conservation current evidence and hypothetical considerations. Trends Endocrinol Metab 4(8):255–259

    Article  CAS  PubMed  Google Scholar 

  119. Kowalczyk R, Harris PW, Brimble MA, Callon KE, Watson M, Cornish J (2012) Synthesis and evaluation of disulfide bond mimetics of amylin-(1-8) as agents to treat osteoporosis. Bioorg Med Chem 20(8):2661–2668. doi:10.1016/j.bmc.2012.02.030

    Article  CAS  PubMed  Google Scholar 

  120. Yang J, Zhang X, Wang W, Liu J (2010) Insulin stimulates osteoblast proliferation and differentiation through ERK and PI3K in MG-63 cells. Cell Biochem Funct 28(4):334–341. doi:10.1002/cbf.1668

    Article  CAS  PubMed  Google Scholar 

  121. Botolin S, Merritt C, Erickson M (2013) Aseptic loosening of pedicle screw as a result of metal wear debris in a pediatric patient. Spine (Phila Pa 1976) 38(1):E38–E42. doi:10.1097/BRS.0b013e3182793e51

    Article  Google Scholar 

  122. Thomas DM, Udagawa N, Hards DK, Quinn JM, Moseley JM, Findlay DM, Best JD (1998) Insulin receptor expression in primary and cultured osteoclast-like cells. Bone 23(3):181–186

    Article  CAS  PubMed  Google Scholar 

  123. Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, Ducy P, Karsenty G (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142(2):296–308. doi:10.1016/j.cell.2010.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yadav VK, Oury F, Suda N, Liu ZW, Gao XB, Confavreux C, Klemenhagen KC, Tanaka KF, Gingrich JA, Guo XE, Tecott LH, Mann JJ, Hen R, Horvath TL, Karsenty G (2009) A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 138(5):976–989. doi:10.1016/j.cell.2009.06.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yadav VK, Ryu JH, Suda N, Tanaka KF, Gingrich JA, Schutz G, Glorieux FH, Chiang CY, Zajac JD, Insogna KL, Mann JJ, Hen R, Ducy P, Karsenty G (2008) Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135(5):825–837. doi:10.1016/j.cell.2008.09.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Carmody JS, Ahmad NN, Machineni S, Lajoie S, Kaplan LM (2015) Weight loss after RYGB is independent of and complementary to serotonin 2C receptor signaling in male mice. Endocrinology 156(9):3183–3191. doi: 10.1210/en.2015-1226

  127. Cornish J, Callon KE, Bava U, Lin C, Naot D, Hill BL, Grey AB, Broom N, Myers DE, Nicholson GC, Reid IR (2002) Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol 175(2):405–415

    Article  CAS  PubMed  Google Scholar 

  128. Holloway WR, Collier FM, Aitken CJ, Myers DE, Hodge JM, Malakellis M, Gough TJ, Collier GR, Nicholson GC (2002) Leptin inhibits osteoclast generation. J Bone Miner Res 17(2):200–209. doi:10.1359/jbmr.2002.17.2.200

    Article  CAS  PubMed  Google Scholar 

  129. Burguera B, Hofbauer LC, Thomas T, Gori F, Evans GL, Khosla S, Riggs BL, Turner RT (2001) Leptin reduces ovariectomy-induced bone loss in rats. Endocrinology 142(8):3546–3553. doi:10.1210/endo.142.8.8346

    Article  CAS  PubMed  Google Scholar 

  130. Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL (1999) Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 140(4):1630–1638. doi:10.1210/endo.140.4.6637

    CAS  PubMed  Google Scholar 

  131. Gordeladze JO, Drevon CA, Syversen U, Reseland JE (2002) Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: Impact on differentiation markers, apoptosis, and osteoclastic signaling. J Cell Biochem 85(4):825–836. doi:10.1002/jcb.10156

    Article  CAS  PubMed  Google Scholar 

  132. Hamrick MW, Pennington C, Newton D, Xie D, Isales C (2004) Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone 34(3):376–383. doi:10.1016/j.bone.2003.11.020

    Article  CAS  PubMed  Google Scholar 

  133. Peng XD, Xie H, Zhao Q, Wu XP, Sun ZQ, Liao EY (2008) Relationships between serum adiponectin, leptin, resistin, visfatin levels and bone mineral density, and bone biochemical markers in Chinese men. Clin Chim Acta 387(1–2):31–35. doi:10.1016/j.cca.2007.08.012

    Article  CAS  PubMed  Google Scholar 

  134. Zhang H, Xie H, Zhao Q, Xie GQ, Wu XP, Liao EY, Luo XH (2010) Relationships between serum adiponectin, apelin, leptin, resistin, visfatin levels and bone mineral density, and bone biochemical markers in post-menopausal Chinese women. J Endocrinol Investig 33(10):707–711. doi:10.3275/6886

    Article  CAS  Google Scholar 

  135. Devlin MJ (2011) Why does starvation make bones fat? Am J Hum Biol 23(5):577–585. doi:10.1002/ajhb.21202

    Article  PubMed  PubMed Central  Google Scholar 

  136. Scheller EL, Rosen CJ (2014) What’s the matter with MAT? Marrow adipose tissue, metabolism, and skeletal health. Ann N Y Acad Sci 1311:14–30. doi:10.1111/nyas.12327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Schafer AL, Li X, Schwartz AV, Tufts LS, Wheeler AL, Grunfeld C, Stewart L, Rogers SJ, Carter JT, Posselt AM, Black DM, Shoback DM (2015) Changes in vertebral bone marrow fat and bone mass after gastric bypass surgery: A pilot study. Bone 74:140–145. doi:10.1016/j.bone.2015.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chao D, Espeland MA, Farmer D, Register TC, Lenchik L, Applegate WB, Ettinger WH Jr (2000) Effect of voluntary weight loss on bone mineral density in older overweight women. J Am Geriatr Soc 48(7):753–759

    Article  CAS  PubMed  Google Scholar 

  139. Ensrud KE, Ewing SK, Stone KL, Cauley JA, Bowman PJ, Cummings SR, Study of Osteoporotic Fractures Research G (2003) Intentional and unintentional weight loss increase bone loss and hip fracture risk in older women. J Am Geriatr Soc 51(12):1740–1747

    Article  PubMed  Google Scholar 

  140. Villareal DT, Shah K, Banks MR, Sinacore DR, Klein S (2008) Effect of weight loss and exercise therapy on bone metabolism and mass in obese older adults: a one-year randomized controlled trial. J Clin Endocrinol Metab 93(6):2181–2187. doi:10.1210/jc.2007-1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ensrud KE, Fullman RL, Barrett-Connor E, Cauley JA, Stefanick ML, Fink HA, Lewis CE, Orwoll E, Osteoporotic Fractures in Men Study Research G (2005) Voluntary weight reduction in older men increases hip bone loss: the osteoporotic fractures in men study. J Clin Endocrinol Metab 90(4):1998–2004. doi:10.1210/jc.2004-1805

    Article  CAS  PubMed  Google Scholar 

  142. Aguirre L, Napoli N, Waters D, Qualls C, Villareal DT, Armamento-Villareal R (2014) Increasing adiposity is associated with higher adipokine levels and lower bone mineral density in obese older adults. J Clin Endocrinol Metab 99(9):3290–3297. doi:10.1210/jc.2013-3200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhao LJ, Liu YJ, Liu PY, Hamilton J, Recker RR, Deng HW (2007) Relationship of obesity with osteoporosis. J Clin Endocrinol Metab 92(5):1640–1646. doi:10.1210/jc.2006-0572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Compston J (2013) Obesity and bone. Curr Osteoporos Rep 11(1):30–35. doi:10.1007/s11914-012-0127-y

    Article  PubMed  Google Scholar 

  145. Compston JE, Flahive J, Hosmer DW, Watts NB, Siris ES, Silverman S, Saag KG, Roux C, Rossini M, Pfeilschifter J, Nieves JW, Netelenbos JC, March L, LaCroix AZ, Hooven FH, Greenspan SL, Gehlbach SH, Diez-Perez A, Cooper C, Chapurlat RD, Boonen S, Anderson FA Jr, Adami S, Adachi JD, Investigators G (2014) Relationship of weight, height, and body mass index with fracture risk at different sites in postmenopausal women: the Global Longitudinal study of Osteoporosis in Women (GLOW). J Bone Miner Res 29(2):487–493. doi:10.1002/jbmr.2051

    Article  PubMed  Google Scholar 

  146. Rahman S, Lu Y, Czernik PJ, Rosen CJ, Enerback S, Lecka-Czernik B (2013) Inducible brown adipose tissue, or beige fat, is anabolic for the skeleton. Endocrinology 154(8):2687–2701. doi:10.1210/en.2012-2162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Fazeli PK, Horowitz MC, MacDougald OA, Scheller EL, Rodeheffer MS, Rosen CJ, Klibanski A (2013) Marrow fat and bone—new perspectives. J Clin Endocrinol Metab 98(3):935–945. doi:10.1210/jc.2012-3634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Krings A, Rahman S, Huang S, Lu Y, Czernik PJ, Lecka-Czernik B (2012) Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone 50(2):546–552. doi:10.1016/j.bone.2011.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sheu Y, Cauley JA (2011) The role of bone marrow and visceral fat on bone metabolism. Curr Osteoporos Rep 9(2):67–75. doi:10.1007/s11914-011-0051-6

    Article  PubMed  PubMed Central  Google Scholar 

  150. Qin W, Bauman WA, Cardozo C (2010) Bone and muscle loss after spinal cord injury: organ interactions. Ann N Y Acad Sci 1211:66–84. doi:10.1111/j.1749-6632.2010.05806.x

    Article  PubMed  Google Scholar 

  151. Bredella MA, Fazeli PK, Miller KK, Misra M, Torriani M, Thomas BJ, Ghomi RH, Rosen CJ, Klibanski A (2009) Increased bone marrow fat in anorexia nervosa. J Clin Endocrinol Metab 94(6):2129–2136. doi:10.1210/jc.2008-2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ecklund K, Vajapeyam S, Feldman HA, Buzney CD, Mulkern RV, Kleinman PK, Rosen CJ, Gordon CM (2010) Bone marrow changes in adolescent girls with anorexia nervosa. J Bone Miner Res 25(2):298–304. doi:10.1359/jbmr.090805

    Article  PubMed  PubMed Central  Google Scholar 

  153. Cohen A, Dempster DW, Stein EM, Nickolas TL, Zhou H, McMahon DJ, Muller R, Kohler T, Zwahlen A, Lappe JM, Young P, Recker RR, Shane E (2012) Increased marrow adiposity in premenopausal women with idiopathic osteoporosis. J Clin Endocrinol Metab 97(8):2782–2791. doi:10.1210/jc.2012-1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Di Iorgi N, Mo AO, Grimm K, Wren TA, Dorey F, Gilsanz V (2010) Bone acquisition in healthy young females is reciprocally related to marrow adiposity. J Clin Endocrinol Metab 95(6):2977–2982. doi:10.1210/jc.2009-2336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Di Iorgi N, Rosol M, Mittelman SD, Gilsanz V (2008) Reciprocal relation between marrow adiposity and the amount of bone in the axial and appendicular skeleton of young adults. J Clin Endocrinol Metab 93(6):2281–2286. doi:10.1210/jc.2007-2691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Wren TA, Chung SA, Dorey FJ, Bluml S, Adams GB, Gilsanz V (2011) Bone marrow fat is inversely related to cortical bone in young and old subjects. J Clin Endocrinol Metab 96(3):782–786. doi:10.1210/jc.2010-1922

    Article  CAS  PubMed  Google Scholar 

  157. Shen W, Chen J, Gantz M, Punyanitya M, Heymsfield SB, Gallagher D, Albu J, Engelson E, Kotler D, Pi-Sunyer X, Gilsanz V (2012) MRI-measured pelvic bone marrow adipose tissue is inversely related to DXA-measured bone mineral in younger and older adults. Eur J Clin Nutr 66(9):983–988. doi:10.1038/ejcn.2012.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Moyer-Mileur LJ, Slater H, Jordan KC, Murray MA (2008) IGF-1 and IGF-binding proteins and bone mass, geometry, and strength: relation to metabolic control in adolescent girls with type 1 diabetes. J Bone Miner Res 23(12):1884–1891. doi:10.1359/jbmr.080713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. McCabe L, Zhang J, Raehtz S (2011) Understanding the skeletal pathology of type 1 and 2 diabetes mellitus. Crit Rev Eukaryot Gene Expr 21(2):187–206

    Article  CAS  PubMed  Google Scholar 

  160. Baum T, Yap SP, Karampinos DC, Nardo L, Kuo D, Burghardt AJ, Masharani UB, Schwartz AV, Li X, Link TM (2012) Does vertebral bone marrow fat content correlate with abdominal adipose tissue, lumbar spine bone mineral density, and blood biomarkers in women with type 2 diabetes mellitus? J Magn Reson Imaging 35(1):117–124. doi:10.1002/jmri.22757

    Article  PubMed  PubMed Central  Google Scholar 

  161. Schwartz AV, Vittinghoff E, Bauer DC, Hillier TA, Strotmeyer ES, Ensrud KE, Donaldson MG, Cauley JA, Harris TB, Koster A, Womack CR, Palermo L, Black DM, Study of Osteoporotic Fractures (SOF) Research Group, Osteoporotic Fractures in Men (MrOS) Research Group, Health, Aging, and Body Composition (Health ABC) Research Group (2011) Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA 305(21):2184–2192. doi:10.1001/jama.2011.715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Patsch JM, Li X, Baum T, Yap SP, Karampinos DC, Schwartz AV, Link TM (2013) Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures. J Bone Miner Res 28(8):1721–1728. doi:10.1002/jbmr.1950

    Article  PubMed  PubMed Central  Google Scholar 

  163. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA (2001) Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 86(5):1930–1935. doi:10.1210/jcem.86.5.7463

    Article  CAS  PubMed  Google Scholar 

  164. Pischon T, Girman CJ, Hotamisligil GS, Rifai N, Hu FB, Rimm EB (2004) Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 291(14):1730–1737. doi:10.1001/jama.291.14.1730

    Article  CAS  PubMed  Google Scholar 

  165. Nakashima R, Kamei N, Yamane K, Nakanishi S, Nakashima A, Kohno N (2006) Decreased total and high molecular weight adiponectin are independent risk factors for the development of type 2 diabetes in Japanese-Americans. J Clin Endocrinol Metab 91(10):3873–3877. doi:10.1210/jc.2006-1158

    Article  CAS  PubMed  Google Scholar 

  166. Shinoda Y, Yamaguchi M, Ogata N, Akune T, Kubota N, Yamauchi T, Terauchi Y, Kadowaki T, Takeuchi Y, Fukumoto S, Ikeda T, Hoshi K, Chung UI, Nakamura K, Kawaguchi H (2006) Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways. J Cell Biochem 99(1):196–208. doi:10.1002/jcb.20890

    Article  CAS  PubMed  Google Scholar 

  167. Williams GA, Wang Y, Callon KE, Watson M, Lin JM, Lam JB, Costa JL, Orpe A, Broom N, Naot D, Reid IR, Cornish J (2009) In vitro and in vivo effects of adiponectin on bone. Endocrinology 150(8):3603–3610. doi:10.1210/en.2008-1639

    Article  CAS  PubMed  Google Scholar 

  168. Oshima K, Nampei A, Matsuda M, Iwaki M, Fukuhara A, Hashimoto J, Yoshikawa H, Shimomura I (2005) Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun 331(2):520–526. doi:10.1016/j.bbrc.2005.03.210

    Article  CAS  PubMed  Google Scholar 

  169. Richards JB, Valdes AM, Burling K, Perks UC, Spector TD (2007) Serum adiponectin and bone mineral density in women. J Clin Endocrinol Metab 92(4):1517–1523. doi:10.1210/jc.2006-2097

    Article  CAS  PubMed  Google Scholar 

  170. Napoli N, Pedone C, Pozzilli P, Lauretani F, Ferrucci L, Incalzi RA (2010) Adiponectin and bone mass density: the InCHIANTI study. Bone 47(6):1001–1005. doi:10.1016/j.bone.2010.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA (2001) The hormone resistin links obesity to diabetes. Nature 409(6818):307–312. doi:10.1038/35053000

    Article  CAS  PubMed  Google Scholar 

  172. Fain JN, Cheema PS, Bahouth SW, Lloyd Hiler M (2003) Resistin release by human adipose tissue explants in primary culture. Biochem Biophys Res Commun 300(3):674–678

    Article  CAS  PubMed  Google Scholar 

  173. Patel L, Buckels AC, Kinghorn IJ, Murdock PR, Holbrook JD, Plumpton C, Macphee CH, Smith SA (2003) Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators. Biochem Biophys Res Commun 300(2):472–476

    Article  CAS  PubMed  Google Scholar 

  174. Vendrell J, Broch M, Vilarrasa N, Molina A, Gomez JM, Gutierrez C, Simon I, Soler J, Richart C (2004) Resistin, adiponectin, ghrelin, leptin, and proinflammatory cytokines: relationships in obesity. Obes Res 12(6):962–971. doi:10.1038/oby.2004.118

    Article  CAS  PubMed  Google Scholar 

  175. Yannakoulia M, Yiannakouris N, Bluher S, Matalas AL, Klimis-Zacas D, Mantzoros CS (2003) Body fat mass and macronutrient intake in relation to circulating soluble leptin receptor, free leptin index, adiponectin, and resistin concentrations in healthy humans. J Clin Endocrinol Metab 88(4):1730–1736. doi:10.1210/jc.2002-021604

    Article  CAS  PubMed  Google Scholar 

  176. Thommesen L, Stunes AK, Monjo M, Grosvik K, Tamburstuen MV, Kjobli E, Lyngstadaas SP, Reseland JE, Syversen U (2006) Expression and regulation of resistin in osteoblasts and osteoclasts indicate a role in bone metabolism. J Cell Biochem 99(3):824–834. doi:10.1002/jcb.20915

    Article  CAS  PubMed  Google Scholar 

  177. Oh KW, Lee WY, Rhee EJ, Baek KH, Yoon KH, Kang MI, Yun EJ, Park CY, Ihm SH, Choi MG, Yoo HJ, Park SW (2005) The relationship between serum resistin, leptin, adiponectin, ghrelin levels and bone mineral density in middle-aged men. Clin Endocrinol 63(2):131–138. doi:10.1111/j.1365-2265.2005.02312.x

    Article  CAS  Google Scholar 

  178. Fernandez-Real JM, Ricart W (2003) Insulin resistance and chronic cardiovascular inflammatory syndrome. Endocr Rev 24(3):278–301. doi:10.1210/er.2002-0010

    Article  CAS  PubMed  Google Scholar 

  179. Das UN (2001) Is obesity an inflammatory condition? Nutrition 17(11–12):953–966

    Article  CAS  PubMed  Google Scholar 

  180. Kristiansen OP, Mandrup-Poulsen T (2005) Interleukin-6 and diabetes: the good, the bad, or the indifferent? Diabetes 54(Suppl 2):S114–S124

    Article  CAS  PubMed  Google Scholar 

  181. Berthier MT, Paradis AM, Tchernof A, Bergeron J, Prud’homme D, Despres JP, Vohl MC (2003) The interleukin 6-174G/C polymorphism is associated with indices of obesity in men. J Hum Genet 48(1):14–19. doi:10.1007/s100380300002

    Article  CAS  PubMed  Google Scholar 

  182. Richards CD, Langdon C, Deschamps P, Pennica D, Shaughnessy SG (2000) Stimulation of osteoclast differentiation in vitro by mouse oncostatin M, leukaemia inhibitory factor, cardiotrophin-1 and interleukin 6: synergy with dexamethasone. Cytokine 12(6):613–621. doi:10.1006/cyto.1999.0635

    Article  CAS  PubMed  Google Scholar 

  183. Taguchi Y, Yamamoto M, Yamate T, Lin SC, Mocharla H, DeTogni P, Nakayama N, Boyce BF, Abe E, Manolagas SC (1998) Interleukin-6-type cytokines stimulate mesenchymal progenitor differentiation toward the osteoblastic lineage. Proc Assoc Am Physicians 110(6):559–574

    CAS  PubMed  Google Scholar 

  184. Franchimont N, Wertz S, Malaise M (2005) Interleukin-6: an osteotropic factor influencing bone formation? Bone 37(5):601–606. doi:10.1016/j.bone.2005.06.002

    Article  CAS  PubMed  Google Scholar 

  185. Weitzmann MN (2013) The role of inflammatory cytokines, the RANKL/OPG axis, and the immunoskeletal interface in physiological bone turnover and osteoporosis. Scientifica (Cairo) 2013:125705. doi:10.1155/2013/125705

    Google Scholar 

  186. West IC (2000) Radicals and oxidative stress in diabetes. Diabet Med 17(3):171–180

    Article  CAS  PubMed  Google Scholar 

  187. Stadler K (2012) Oxidative stress in diabetes. Adv Exp Med Biol 771:272–287

    PubMed  Google Scholar 

  188. Zmijewski JW, Zhao X, Xu Z, Abraham E (2007) Exposure to hydrogen peroxide diminishes NF-kappaB activation, IkappaB-alpha degradation, and proteasome activity in neutrophils. Am J Physiol Cell Physiol 293(1):C255–C266. doi:10.1152/ajpcell.00618.2006

    Article  CAS  PubMed  Google Scholar 

  189. Manolagas SC (2010) From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev 31(3):266–300. doi:10.1210/er.2009-0024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Frassetto LA, Sebastian A (2012) How metabolic acidosis and oxidative stress alone and interacting may increase the risk of fracture in diabetic subjects. Med Hypotheses 79(2):189–192. doi:10.1016/j.mehy.2012.04.031

    Article  CAS  PubMed  Google Scholar 

  191. Nelson LR, Bulun SE (2001) Estrogen production and action. J Am Acad Dermatol 45(3 Suppl):S116–S124

    Article  CAS  PubMed  Google Scholar 

  192. Elbaz A, Rivas D, Duque G (2009) Effect of estrogens on bone marrow adipogenesis and Sirt1 in aging C57BL/6J mice. Biogerontology 10(6):747–755. doi:10.1007/s10522-009-9221-7

    Article  CAS  PubMed  Google Scholar 

  193. Tseng PC, Hou SM, Chen RJ, Peng HW, Hsieh CF, Kuo ML, Yen ML (2011) Resveratrol promotes osteogenesis of human mesenchymal stem cells by upregulating RUNX2 gene expression via the SIRT1/FOXO3A axis. J Bone Miner Res 26(10):2552–2563. doi:10.1002/jbmr.460

    Article  CAS  PubMed  Google Scholar 

  194. Ornstrup MJ, Kjaer TN, Harslof T, Stodkilde-Jorgensen H, Hougaard DM, Cohen A, Pedersen SB, Langdahl BL (2015) Adipose tissue, estradiol levels, and bone health in obese men with metabolic syndrome. Eur J Endocrinol 172(2):205–216. doi:10.1530/EJE-14-0792

    Article  PubMed  CAS  Google Scholar 

  195. Wang C, Jackson G, Jones TH, Matsumoto AM, Nehra A, Perelman MA, Swerdloff RS, Traish A, Zitzmann M, Cunningham G (2011) Low testosterone associated with obesity and the metabolic syndrome contributes to sexual dysfunction and cardiovascular disease risk in men with type 2 diabetes. Diabetes Care 34(7):1669–1675. doi:10.2337/dc10-2339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Michael H, Harkonen PL, Vaananen HK, Hentunen TA (2005) Estrogen and testosterone use different cellular pathways to inhibit osteoclastogenesis and bone resorption. J Bone Miner Res 20(12):2224–2232. doi:10.1359/JBMR.050803

    Article  CAS  PubMed  Google Scholar 

  197. Gallagher EJ, Sun H, Kornhauser C, Tobin-Hess A, Epstein S, Yakar S, LeRoith D (2014) The effect of dipeptidyl peptidase-IV inhibition on bone in a mouse model of type 2 diabetes. Diabetes Metab Res Rev 30(3):191–200. doi:10.1002/dmrr.2466

    Article  CAS  PubMed  Google Scholar 

  198. Silva BC, Leslie WD, Resch H, Lamy O, Lesnyak O, Binkley N, McCloskey EV, Kanis JA, Bilezikian JP (2014) Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res 29(3):518–530. doi:10.1002/jbmr.2176

    Article  PubMed  Google Scholar 

  199. Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, Eisman JA, Fujiwara S, Kroger H, Mellstrom D, Meunier PJ, Melton LJ 3rd, O’Neill T, Pols H, Reeve J, Silman A, Tenenhouse A (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20(7):1185–1194. doi:10.1359/JBMR.050304

    Article  PubMed  Google Scholar 

  200. Kulak CA, Dempster DW (2010) Bone histomorphometry: a concise review for endocrinologists and clinicians. Arq Bras Endocrinol Metabol 54(2):87–98

    Article  PubMed  Google Scholar 

  201. Hildebrand T, Laib A, Muller R, Dequeker J, Ruegsegger P (1999) Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res 14(7):1167–1174. doi:10.1359/jbmr.1999.14.7.1167

    Article  CAS  PubMed  Google Scholar 

  202. Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90(12):6508–6515. doi:10.1210/jc.2005-1258

    Article  CAS  PubMed  Google Scholar 

  203. Krug R, Carballido-Gamio J, Banerjee S, Burghardt AJ, Link TM, Majumdar S (2008) In vivo ultra-high-field magnetic resonance imaging of trabecular bone microarchitecture at 7 T. J Magn Reson Imaging 27(4):854–859. doi:10.1002/jmri.21325

    Article  PubMed  Google Scholar 

  204. Eller-Vainicher C, Morelli V, Ulivieri FM, Palmieri S, Zhukouskaya VV, Cairoli E, Pino R, Naccarato A, Scillitani A, Beck-Peccoz P, Chiodini I (2012) Bone quality, as measured by trabecular bone score in patients with adrenal incidentalomas with and without subclinical hypercortisolism. J Bone Miner Res 27(10):2223–2230. doi:10.1002/jbmr.1648

    Article  CAS  PubMed  Google Scholar 

  205. Pothuaud L, Carceller P, Hans D (2008) Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture. Bone 42(4):775–787. doi:10.1016/j.bone.2007.11.018

    Article  PubMed  Google Scholar 

  206. Pothuaud L, Barthe N, Krieg MA, Mehsen N, Carceller P, Hans D (2009) Evaluation of the potential use of trabecular bone score to complement bone mineral density in the diagnosis of osteoporosis: a preliminary spine BMD-matched, case–control study. J Clin Densitom 12(2):170–176. doi:10.1016/j.jocd.2008.11.006

    Article  PubMed  Google Scholar 

  207. Bousson V, Bergot C, Sutter B, Levitz P, Cortet B (2012) Trabecular bone score (TBS): available knowledge, clinical relevance, and future prospects. Osteoporos Int 23(5):1489–1501. doi:10.1007/s00198-011-1824-6

    Article  CAS  PubMed  Google Scholar 

  208. Hans D, Barthe N, Boutroy S, Pothuaud L, Winzenrieth R, Krieg MA (2011) Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom 14(3):302–312. doi:10.1016/j.jocd.2011.05.005

    Article  PubMed  Google Scholar 

  209. Cohen A, Dempster DW, Muller R, Guo XE, Nickolas TL, Liu XS, Zhang XH, Wirth AJ, van Lenthe GH, Kohler T, McMahon DJ, Zhou H, Rubin MR, Bilezikian JP, Lappe JM, Recker RR, Shane E (2010) Assessment of trabecular and cortical architecture and mechanical competence of bone by high-resolution peripheral computed tomography: comparison with transiliac bone biopsy. Osteoporos Int 21(2):263–273. doi:10.1007/s00198-009-0945-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Amstrup AK, Jakobsen NF, Moser E, Sikjaer T, Mosekilde L, Rejnmark L (2015) Association between bone indices assessed by DXA, HR-pQCT and QCT scans in post-menopausal women. J Bone Miner Metab. doi:10.1007/s00774-015-0708-9

    PubMed  Google Scholar 

  211. Manske SL, Zhu Y, Sandino C, Boyd SK (2015) Human trabecular bone microarchitecture can be assessed independently of density with second generation HR-pQCT. Bone 79:213–221. doi:10.1016/j.bone.2015.06.006

    Article  CAS  PubMed  Google Scholar 

  212. Jenkins T, Coutts LV, D’Angelo S, Dunlop DG, Oreffo RO, Cooper C, Harvey NC, Thurner PJ, Latham JM, Taylor P, Baxter M, Moss N, Ball C, Chan K (2015) Site-dependent reference point microindentation complements clinical measures for improved fracture risk assessment at the human femoral neck. J Bone Miner Res. doi:10.1002/jbmr.2605

    PubMed  Google Scholar 

  213. Coutts LV, Jenkins T, Li T, Dunlop DG, Oreffo RO, Cooper C, Harvey NC, Thurner PJ (2015) Variability in reference point microindentation and recommendations for testing cortical bone: location, thickness and orientation heterogeneity. J Mech Behav Biomed Mater 46:292–304. doi:10.1016/j.jmbbm.2015.02.004

    Article  CAS  PubMed  Google Scholar 

  214. Jamal SA, West SL, Miller PD (2012) Bone and kidney disease: diagnostic and therapeutic implications. Curr Rheumatol Rep 14(3):217–223. doi:10.1007/s11926-012-0243-9

    Article  CAS  PubMed  Google Scholar 

  215. Vestergaard P, Rejnmark L, Mosekilde L (2011) Are antiresorptive drugs effective against fractures in patients with diabetes? Calcif Tissue Int 88(3):209–214. doi:10.1007/s00223-010-9450-4

    Article  CAS  PubMed  Google Scholar 

  216. Keegan TH, Schwartz AV, Bauer DC, Sellmeyer DE, Kelsey JL, Fracture Intervention T (2004) Effect of alendronate on bone mineral density and biochemical markers of bone turnover in type 2 diabetic women: the fracture intervention trial. Diabetes Care 27(7):1547–1553

    Article  CAS  PubMed  Google Scholar 

  217. Johnell O, Kanis JA, Black DM, Balogh A, Poor G, Sarkar S, Zhou C, Pavo I (2004) Associations between baseline risk factors and vertebral fracture risk in the Multiple Outcomes of Raloxifene Evaluation (MORE) Study. J Bone Miner Res 19(5):764–772. doi:10.1359/JBMR.040211

    Article  CAS  PubMed  Google Scholar 

  218. Ann Schwartz EV, Douglas Bauer, Steven R. Cummings, Andrew Grey, Michael R. McClung, Nicola Napoli, Ian R. Reid, Anne L. Schafer, Robert B. Wallace, Dennis Black (2015) Bisphosphonates reduce fracture risk in postmenopausal women with diabetes: Results from FIT and HORIZON trials. In: ASBMR 2015 Annual Meeting, Seattle, Washington, USA

  219. Zhukouskaya VV, Eller-Vainicher C, Shepelkevich AP, Dydyshko Y, Cairoli E, Chiodini I (2015) Bone health in type 1 diabetes: focus on evaluation and treatment in clinical practice. J Endocrinol Investig. doi:10.1007/s40618-015-0284-9

    Google Scholar 

  220. Ko KI, Coimbra LS, Tian C, Alblowi J, Kayal RA, Einhorn TA, Gerstenfeld LC, Pignolo RJ, Graves DT (2015) Diabetes reduces mesenchymal stem cells in fracture healing through a TNFalpha-mediated mechanism. Diabetologia 58(3):633–642. doi:10.1007/s00125-014-3470-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Khazai NB, Beck GR, Umpierrez GE (2009) Diabetes and fractures—an overshadowed association. Curr Opin Endocrinol Diabetes Obes 16(6):435

    Article  PubMed  PubMed Central  Google Scholar 

  222. Kayal RA, Siqueira M, Alblowi J, McLean J, Krothapalli N, Faibish D, Einhorn TA, Gerstenfeld LC, Graves DT (2010) TNF-alpha mediates diabetes-enhanced chondrocyte apoptosis during fracture healing and stimulates chondrocyte apoptosis through FOXO1. J Bone Miner Res 25(7):1604–1615. doi:10.1002/jbmr.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Kayal RA, Alblowi J, McKenzie E, Krothapalli N, Silkman L, Gerstenfeld L, Einhorn TA, Graves DT (2009) Diabetes causes the accelerated loss of cartilage during fracture repair which is reversed by insulin treatment. Bone 44(2):357–363. doi:10.1016/j.bone.2008.10.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Alblowi J, Tian C, Siqueira MF, Kayal RA, McKenzie E, Behl Y, Gerstenfeld L, Einhorn TA, Graves DT (2013) Chemokine expression is upregulated in chondrocytes in diabetic fracture healing. Bone 53(1):294–300. doi:10.1016/j.bone.2012.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Gerstenfeld LC, Cho TJ, Kon T, Aizawa T, Tsay A, Fitch J, Barnes GL, Graves DT, Einhorn TA (2003) Impaired fracture healing in the absence of TNF-alpha signaling: the role of TNF-alpha in endochondral cartilage resorption. J Bone Miner Res 18(9):1584–1592. doi:10.1359/jbmr.2003.18.9.1584

    Article  CAS  PubMed  Google Scholar 

  226. Yang X, Ricciardi BF, Hernandez-Soria A, Shi Y, Pleshko Camacho N, Bostrom MP (2007) Callus mineralization and maturation are delayed during fracture healing in interleukin-6 knockout mice. Bone 41(6):928–936. doi:10.1016/j.bone.2007.07.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5):1076–1084. doi:10.1002/jcb.20886

    Article  CAS  PubMed  Google Scholar 

  228. Shapiro SA, Stansberry KB, Hill MA, Meyer MD, McNitt PM, Bhatt BA, Vinik AI (1998) Normal blood flow response and vasomotion in the diabetic Charcot foot. J Diabetes Complicat 12(3):147–153

    Article  CAS  PubMed  Google Scholar 

  229. Sanders LJ FR (1991) Diabetic neuropathic osteoarthropathy: The Charcot foot. In: Livingstone C (ed) The High Risk Foot in Diabetes Mellitus. New York, pp 297–338

  230. Young MJ, Marshall A, Adams JE, Selby PL, Boulton AJ (1995) Osteopenia, neurological dysfunction, and the development of Charcot neuroarthropathy. Diabetes Care 18(1):34–38

    Article  CAS  PubMed  Google Scholar 

  231. Selby PL, Young MJ, Boulton AJ (1994) Bisphosphonates: a new treatment for diabetic Charcot neuroarthropathy? Diabet Med 11(1):28–31

    Article  CAS  PubMed  Google Scholar 

  232. Artsi H, Cohen-Kfir E, Gurt I, Shahar R, Bajayo A, Kalish N, Bellido TM, Gabet Y, Dresner-Pollak R (2014) The sirtuin1 activator SRT3025 down-regulates sclerostin and rescues ovariectomy-induced bone loss and biomechanical deterioration in female mice. Endocrinology 155(9):3508–3515

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the following speakers who participated in the First International Symposium on Diabetes and Bone in Rome in November 2014. We have included some of the content of their presentation in its original or modified form as a contribution in our review.

Bo Abrahamsen: Institute of Clinical Research, Research Centre for Ageing and Osteoporosis, Department of Medicine, Glostrup Hospital (Nord), Glostrup, Denmark;

Laurie Baggio: Mt. Sinai Hospital Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada;

Marco Baroni: Clinica Medica, Sapienza University of Rome, Rome, Italy;

Dennis Black: University of California San Francisco (UCSF), San Francisco, California, USA;

Henry Bone: Michigan Bone and Mineral Clinic PC, University of Michigan, Detroit, USA;

Roberto Civitelli: Division of Bone and Mineral Diseases Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri, USA;

Renate T. de Jongh: VU Medical Center Amsterdam, The Netherlands;

David Dempster: College of Physicians and Surgeons of Columbia University Regional Bone Center, Helen Hayes Hospital, New York State Department of Health, New York, USA;

Rivka Dresner-Pollack: Hadassah-Hebrew University Medical Center, Jerusalem, Israel;

Didier Hans: University of Lausanne, Lausanne, Switzerland;

Davide Lauro: University of Rome Tor Vergata, Rome, Italy;

Andrea Lenzi: Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy;

Laura Mc Cabe: Biomedical Imaging Research Center, Michigan State University East Lansing, MI, USA;

Silvia Migliaccio: University of Rome Foro Italico, Rome, Italy;

Geltrude Mingrone: Policlinico Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy;

Anne Schwartz: University of California San Francisco (UCSF), San Francisco, California, USA.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to G. Defeudis.

Ethics declarations

Conflicts of interest

SE is a consultant for Merck and speaker for Merck and Takeda. GD receives travel grant from Itapharma. SM declares that she has no conflict of interest. NN has no conflict of interest. PP has received speaker honoraria and travel grants from Lilly, Astra Zeneca, Merck Sharp & Dohme, and Sanofi.

Additional information

S. Epstein and G. Defeudis contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Epstein, S., Defeudis, G., Manfrini, S. et al. Diabetes and disordered bone metabolism (diabetic osteodystrophy): time for recognition. Osteoporos Int 27, 1931–1951 (2016). https://doi.org/10.1007/s00198-015-3454-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-015-3454-x

Keywords

Navigation