Skip to main content

Diabetic Embryopathy

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 889))

Abstract

Diabetic embryopathy reflects a scientific enigma—how does a seemingly rich intrauterine environment manage to disturb the development of the embryo? Which compounds in that environment may be teratogenic—and how shall we find them? How can we investigate a putative dose–response nature of the teratogen, i.e., how can we monitor the effects of varied severity of the diabetic state (which can be varied in a number of metabolic ways) on the embryonic development?

Here, the whole embryo culture (WEC) technique provides an excellent tool for such studies. WEC is thus currently used to investigate the effect of graded levels of diabetes (e.g., hyperglycemia, hyperketonemia, increased branched chain amino acid (BCAA) levels), and putative antiteratogenic agents (antioxidants, folic acid, arachidonic acid, inositol), as well as the effect of different embryonic genotypes on diabetes-induced (mal)development. WEC is the only method, which is able to couple specific embryonic maldevelopment to precise changes in substrate levels or the (epi)genotype of the embryo.

Using this method, we have been able to demonstrate that a diabetic environment—culture of embryos in serum from diabetic animals or in serum with increased levels of glucose, β-hydroxybutyrate or α-ketoisocaproic acid (KIC)—causes increased embryonic maldevelopment, and that this dysmorphogenesis is blocked by the addition of ROS scavenging agents to the culture medium. Genetically, others and we have demonstrated that Pax-3 downregulation predisposes for diabetes-induced dysmorphogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Eidem I, Stene LC, Henriksen T, Hanssen KF, Vangen S, Vollset SE, Joner G (2010) Congenital anomalies in newborns of women with type 1 diabetes: nationwide population-based study in Norway, 1999-2004. Acta Obstet Gynecol Scand 89:1403–1411

    Article  PubMed  Google Scholar 

  2. Banhidy F, Acs N, Puho EH, Czeizel AE (2010) Congenital abnormalities in the offspring of pregnant women with type 1, type 2 and gestational diabetes mellitus: a population-based case-control study. Congenit Anom (Kyoto) 50:115–121

    Article  Google Scholar 

  3. Lisowski LA, Verheijen PM, Copel JA, Kleinman CS, Wassink S, Visser GH, Meijboom EJ (2010) Congenital heart disease in pregnancies complicated by maternal diabetes mellitus. An international clinical collaboration, literature review, and meta-analysis. Herz 35:19–26

    Article  PubMed  Google Scholar 

  4. Miller E, Hare JW, Cloherty JP, Dunn PJ, Gleason RE, Soeldner JS, Kitzmiller JL (1981) Elevated maternal hemoglobin A1c in early pregnancy and major congenital anomalies in infants of diabetic mothers. N Engl J Med 304:1331–1334

    Article  PubMed  CAS  Google Scholar 

  5. Cockroft DL (1984) Abnormalities induced in cultured rat embryos by hyperglycaemia. Br J Exp Pathol 65:625–636

    PubMed  CAS  Google Scholar 

  6. Eriksson UJ, Borg LAH (1991) Protection by free oxygen radical scavenging enzymes against glucose-induced embryonic malformations in vitro. Diabetologia 34:325–331

    Article  PubMed  CAS  Google Scholar 

  7. Pavlinkova G, Salbaum JM, Kappen C (2009) Maternal diabetes alters transcriptional programs in the developing embryo. BMC Genomics 10:274

    Article  PubMed  Google Scholar 

  8. El-Osta A, Brasacchio D, Yao D, Pocai A, Jones PL, Roeder RG, Cooper ME, Brownlee M (2008) Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med 205:2409–2417

    Article  PubMed  CAS  Google Scholar 

  9. Ylinen K, Aula P, Stenman UH, Kesaniemi-Kuokkanen T, Teramo K (1984) Risk of minor and major fetal malformations in diabetics with high haemoglobin A1c values in early pregnancy. Br Med J 289:345–346

    Article  CAS  Google Scholar 

  10. Suhonen L, Hiilesmaa V, Teramo K (2000) Glycaemic control during early pregnancy and fetal malformations in women with type I diabetes mellitus. Diabetologia 43:79–82

    Article  PubMed  CAS  Google Scholar 

  11. Eriksson UJ, Dahlstrom E, Larsson KS, Hellerstrom C (1982) Increased incidence of congenital malformations in the offspring of diabetic rats and their prevention by maternal insulin therapy. Diabetes 31:1–6

    Article  PubMed  CAS  Google Scholar 

  12. Fine EL, Horal M, Chang TI, Fortin G, Loeken MR (1999) Evidence that elevated glucose causes altered gene expression, apoptosis, and neural tube defects in a mouse model of diabetic pregnancy. Diabetes 48:2454–2462

    Article  PubMed  CAS  Google Scholar 

  13. Li R, Thorens B, Loeken MR (2007) Expression of the gene encoding the high-Km glucose transporter 2 by the early postimplantation mouse embryo is essential for neural tube defects associated with diabetic embryopathy. Diabetologia 50:682–689

    Article  PubMed  CAS  Google Scholar 

  14. Eriksson UJ, Borg LAH (1993) Diabetes and embryonic malformations. Role of substrate-induced free-oxygen radical production for dysmorphogenesis in cultured rat embryos. Diabetes 42:411–419

    Article  PubMed  CAS  Google Scholar 

  15. Yang X, Borg LAH, Eriksson UJ (1997) Altered metabolism and superoxide generation in neural tissue of rat embryos exposed to high glucose. Am J Physiol 272:E173–E180

    PubMed  CAS  Google Scholar 

  16. Sakamaki H, Akazawa S, Ishibashi M, Izumino K, Takino H, Yamasaki H, Yamaguchi Y, Goto S, Urata Y, Kondo T, Nagataki S (1999) Significance of glutathione-dependent antioxidant system in diabetes-induced embryonic malformations. Diabetes 48:1138–1144

    Article  PubMed  CAS  Google Scholar 

  17. Cederberg J, Basu S, Eriksson UJ (2001) Increased rate of lipid peroxidation and protein carbonylation in experimental diabetic pregnancy. Diabetologia 44:766–774

    Article  PubMed  CAS  Google Scholar 

  18. Chang TI, Horal M, Jain SK, Wang F, Patel R, Loeken MR (2003) Oxidant regulation of gene expression and neural tube development: insights gained from diabetic pregnancy on molecular causes of neural tube defects. Diabetologia 46:538–545

    Article  PubMed  CAS  Google Scholar 

  19. Wentzel P, Welsh N, Eriksson UJ (1999) Developmental damage, increased lipid peroxidation, diminished cyclooxygenase-2 gene expression, and lowered PGE2 levels in rat embryos exposed to a diabetic environment. Diabetes 48:813–820

    Article  PubMed  CAS  Google Scholar 

  20. Trocino RA, Akazawa S, Ishibashi M, Matsumoto K, Matsuo H, Yamamoto H, Goto S, Urata Y, Kondo T, Nagataki S (1995) Significance of glutathione depletion and oxidative stress in early embryogenesis in glucose-induced rat embryo culture. Diabetes 44:992–998

    Article  PubMed  CAS  Google Scholar 

  21. Hagay ZJ, Weiss Y, Zusman I, Peled-Kamar M, Reece EA, Eriksson UJ, Groner Y (1995) Prevention of diabetes-associated embryopathy by overexpression of the free radical scavenger copper zinc superoxide dismutase in transgenic mouse embryos. Am J Obstet Gynecol 173:1036–1041

    Article  PubMed  CAS  Google Scholar 

  22. Sivan E, Lee Y, Wu Y, Reece E (1997) Free radical scavenging enzymes in fetal dysmorphogenesis among offspring of diabetic rats. Teratology 56:343–349

    Article  PubMed  CAS  Google Scholar 

  23. Ornoy A, Zaken V, Kohen R (1999) Role of reactive oxygen species (ROS) in the diabetes-induced anomalies in rat embryos in vitro: reduction in antioxidant enzymes and low-molecular-weight antioxidants (LMWA) may be the causative factor for increased anomalies. Teratology 60:376–386

    Article  PubMed  CAS  Google Scholar 

  24. Weksler-Zangen S, Yaffe P, Ornoy A (2003) Reduced SOD activity and increased neural tube defects in embryos of the sensitive but not of the resistant Cohen diabetic rats cultured under diabetic conditions. Birth Defects Res A Clin Mol Teratol 67:429–437

    Article  PubMed  CAS  Google Scholar 

  25. Hod M, Star S, Passonneau JV, Unterman TG, Freinkel N (1986) Effect of hyperglycemia on sorbitol and myo-inositol content of cultured rat conceptus: failure of aldose reductase inhibitors to modify myo-inositol depletion and dysmorphogenesis. Biochem Biophys Res Commun 140:974–980

    Article  PubMed  CAS  Google Scholar 

  26. Eriksson UJ, Naeser P, Brolin SE (1986) Increased accumulation of sorbitol in offspring of manifest diabetic rats. Diabetes 35:1356–1363

    Article  PubMed  CAS  Google Scholar 

  27. Wentzel P, Ejdesjo A, Eriksson UJ (2003) Maternal diabetes in vivo and high glucose in vitro diminish GAPDH activity in rat embryos. Diabetes 52:1222–1228

    Article  PubMed  CAS  Google Scholar 

  28. Wentzel P, Wentzel CR, Gareskog MB, Eriksson UJ (2001) Induction of embryonic dysmorphogenesis by high glucose concentration, disturbed inositol metabolism, and inhibited protein kinase C activity. Teratology 63:193–201

    Article  PubMed  CAS  Google Scholar 

  29. Hiramatsu Y, Sekiguchi N, Hayashi M, Isshiki K, Yokota T, King GL, Loeken MR (2002) Diacylglycerol production and protein kinase C activity are increased in a mouse model of diabetic embryopathy. Diabetes 51:2804–2810

    Article  PubMed  CAS  Google Scholar 

  30. Gareskog M, Wentzel P (2004) Altered protein kinase C activation associated with rat embryonic dysmorphogenesis. Pediatr Res 56:849–857

    Article  PubMed  Google Scholar 

  31. Phelan SA, Ito M, Loeken MR (1997) Neural tube defects in embryos of diabetic mice: role of the Pax-3 gene and apoptosis. Diabetes 46:1189–1197

    Article  PubMed  CAS  Google Scholar 

  32. Pani L, Horal M, Loeken MR (2002) Rescue of neural tube defects in Pax-3-deficient embryos by p53 loss of function: implications for Pax-3- dependent development and tumorigenesis. Genes Dev 16:676–680

    Article  PubMed  CAS  Google Scholar 

  33. Pampfer S, Vanderheyden I, McCracken JE, Vesela J, De Hertogh R (1997) Increased cell death in rat blastocysts exposed to maternal diabetes in utero and to high glucose or tumor necrosis factor-alpha in vitro. Development 124:4827–4836

    PubMed  CAS  Google Scholar 

  34. Sun F, Kawasaki E, Akazawa S, Hishikawa Y, Sugahara K, Kamihira S, Koji T, Eguchi K (2005) Apoptosis and its pathway in early post-implantation embryos of diabetic rats. Diabetes Res Clin Pract 67:110–118

    Article  PubMed  CAS  Google Scholar 

  35. Gareskog M, Cederberg J, Eriksson UJ, Wentzel P (2007) Maternal diabetes in vivo and high glucose concentration in vitro increases apoptosis in rat embryos. Reprod Toxicol 23:63–74

    Article  PubMed  Google Scholar 

  36. Reece EA, Wu YK, Zhao Z, Dhanasekaran D (2006) Dietary vitamin and lipid therapy rescues aberrant signaling and apoptosis and prevents hyperglycemia-induced diabetic embryopathy in rats. Am J Obstet Gynecol 194:580–585

    Article  PubMed  CAS  Google Scholar 

  37. Wentzel P, Eriksson UJ (2002) 8-Iso-PGF(2alpha) administration generates dysmorphogenesis and increased lipid peroxidation in rat embryos in vitro. Teratology 66:164–168

    Article  PubMed  CAS  Google Scholar 

  38. New DAT (1978) Whole embryo culture and the study of mammalian embryos during embryogenesis. Biol Rev 53:81–122

    Article  PubMed  CAS  Google Scholar 

  39. Sadler TW, Horton WEJ (1983) Effects of maternal diabetes on early embryogenesis: the role of insulin and insulin therapy. Diabetes 32:1070–1074

    Article  PubMed  CAS  Google Scholar 

  40. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  41. Kissane JM, Robins E (1958) The fluorometric measurement of deoxyribonucleic acid in animal tissues with special reference to the central nervous system. J Biol Chem 233:184–188

    PubMed  CAS  Google Scholar 

  42. Hinegardner RT (1971) An improved fluorometric assay for DNA. Anal Biochem 39:197–201

    Article  PubMed  CAS  Google Scholar 

  43. Eriksson UJ, Brolin SE, Naeser P (1989) Influence of sorbitol accumulation on growth and development of embryos cultured in elevated levels of glucose and fructose. Diabetes Res 11:27–32

    PubMed  CAS  Google Scholar 

  44. Eriksson UJ, Wentzel P, Minhas HS, Thornalley PJ (1998) Teratogenicity of 3-deoxyglucosone and diabetic embryopathy. Diabetes 47:1960–1966

    Article  PubMed  CAS  Google Scholar 

  45. Wentzel P, Eriksson UJ (1998) Antioxidants diminish developmental damage induced by high glucose and cyclooxygenase inhibitors in rat embryos in vitro. Diabetes 47:677–684

    Article  PubMed  CAS  Google Scholar 

  46. Wentzel P, Eriksson UJ (2005) A diabetes-like environment increases malformation rate and diminishes prostaglandin E(2) in rat embryos: reversal by administration of vitamin E and folic acid. Birth Defects Res A Clin Mol Teratol 73:506–511

    Article  PubMed  CAS  Google Scholar 

  47. Lloyd JB (1990) Cell physiology of the rat visceral yolk sac: a study of pinocytosis and lysosome function. Teratology 41:383–393

    Article  PubMed  CAS  Google Scholar 

  48. Beckman DA, Brent RL, Lloyd JB (1994) Pinocytosis in the rat visceral yolk sac: potential role in amino acid nutrition during the fetal period. Placenta 15:171–176

    Article  PubMed  CAS  Google Scholar 

  49. Brent RL, Beckman DA, Jensen M, Koszalka TR (1990) Experimental yolk sac dysfunction as a model for studying nutritional disturbances in the embryo during early organogenesis. Teratology 41:405–413

    Article  PubMed  CAS  Google Scholar 

  50. Hunter ES, Sadler TW (1992) The role of the visceral yolk sac in hyperglycemia-induced embryopathies in mouse embryos in vitro. Teratology 45:195–203

    Article  PubMed  CAS  Google Scholar 

  51. Brown NA, Fabro S (1981) Quantitation of rat embryonic development in vitro: a morphological scoring system. Teratology 24:65–78

    Article  PubMed  CAS  Google Scholar 

  52. Salbaum JM, Kappen C (2010) Neural tube defect genes and maternal diabetes during pregnancy. Birth Defects Res A Clin Mol Teratol 88:601–611

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf J. Eriksson Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Eriksson, U.J., Wentzel, P. (2012). Diabetic Embryopathy. In: Harris, C., Hansen, J. (eds) Developmental Toxicology. Methods in Molecular Biology, vol 889. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-867-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-867-2_26

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-866-5

  • Online ISBN: 978-1-61779-867-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics