<table>
<thead>
<tr>
<th>Discrepancy ID</th>
<th>Discrepancy summary</th>
<th>Paper 1</th>
<th>Detail from Paper</th>
<th>Paper 2</th>
<th>Detail from Paper</th>
<th>Paper 3</th>
<th>Detail from Paper</th>
<th>Paper 4</th>
<th>Detail from Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>t01/301</td>
<td>Percentage incompatible with ratio, for adverse events in recipients</td>
<td>t01r1</td>
<td>Table 3</td>
<td>81.30% t01r1</td>
<td>Table 3</td>
<td>13/15=86.7%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t01/302</td>
<td>Subgroups incompatible with size of whole group of recipients</td>
<td>t01r1</td>
<td>n=5, n=5, n=6</td>
<td>t01r1</td>
<td>n=15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t02/301</td>
<td>Percentage incompatible with ratio, for recipients reaching AT at 2 to 3 weeks</td>
<td>t02r1</td>
<td>Results (Functiona I capacity) (page 710.e5)</td>
<td>91% t02r1</td>
<td>Results (Functiona I capacity) (page 710.e5)</td>
<td>42/47=89%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t02/302</td>
<td>Percentage incompatible with ratio, for controls reaching AT at 6 months</td>
<td>t02r1</td>
<td>Results (Functiona I capacity) (page 710.e5)</td>
<td>96% t02r1</td>
<td>Results (Functiona I capacity) (page 710.e5)</td>
<td>46/50=92%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t02/303</td>
<td>Percentage incompatible with ratio, for recipients reaching AT at 6 months</td>
<td>t02r1</td>
<td>Results (Functiona I capacity) (page 710.e5)</td>
<td>98% t02r1</td>
<td>Results (Functiona I capacity) (page 710.e5)</td>
<td>49/49=100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t02/304</td>
<td>Discrepant change in control EF measured by SPECT</td>
<td>Table 2</td>
<td>Change listed as 7.0</td>
<td>Table 2</td>
<td>Baseline EF 42.6 and follow-up EF 49.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t03/301</td>
<td>Discrepant LVEF by angiography change in recipients</td>
<td>Table 3</td>
<td>Change listed as -4.1</td>
<td>Table 3</td>
<td>41.5 at baseline to 36.6 at 6 months (36.6-41.5=-4.9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t03/302</td>
<td>Discrepant LVEDV change in recipients</td>
<td>Table 3</td>
<td>Change listed as 8.3</td>
<td>Table 3</td>
<td>154.0 at baseline to 162.0 at 6 months (162-154=8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t03/303</td>
<td>Discrepant LVESV change in recipients</td>
<td>Table 3</td>
<td>Change listed as 5.9</td>
<td>Table 3</td>
<td>103.0 at baseline to 108.0 at 6 months (108-103=5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t03/304</td>
<td>Discrepant scar to LV volume change in recipients</td>
<td>Table 3</td>
<td>Change listed as 4.0</td>
<td>Table 3</td>
<td>44.3 at baseline to 34.7 at 6 months (34.7-44.3=-9.6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t03/305</td>
<td>Discrepant LVESV change in controls</td>
<td>Table 3</td>
<td>Change listed as 19.8</td>
<td>Table 3</td>
<td>138.0 at baseline to 113.0 at 6 months (113-138=-25)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t05/301</td>
<td>Discrepancy in post 18 month change in LVEF% in the recipient group</td>
<td>Table 3</td>
<td>5.90%</td>
<td>t05r2</td>
<td>6.10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Discrepancy in post 18 month change in LVEF% in the control group

Table 3
3.10% 3.40%

Discrepancy in baseline LVEDV index, mL/m2 BSA in the control group

Table 3
81.4±16.9 ml/m2 79.3±12.5 ml/m2

Discrepancy at 18 month LVEDV index, mL/m2 BSA in the control group

Table 3
85.0±24.2 ml/m2 82±19 ml/m2

Contradictory mortality in recipients

1 death 7 deaths, despite fewer patients with same follow-up; results otherwise identical

VO2 level of patients studied

The 191 stem cell patients have a starting VO2 of 1515±506, and final VO2 of 1681±527

Appears to have 40 patients added. Added patients must have a VO2 that is an average of 38% higher than the other first 191. Not clear whether these 40 were kept out of first publication because of high VO2.
40 negative-responder patients omitted from STAR?

The 40 extra patients have a starting VO2 of \((\frac{1560 \times 239 - 1515 \times 191}{40}) = 2086.9\), and a final VO2 of \((\frac{1740 \times 231 - 1681 \times 191}{40}) = 2021.7\), i.e. a mean stem cell effect of minus 65.2 ml/min.

Baseline EFs described as comparable, when calculation from displayed data shows \(P<0.0000001\).

Reference to SPSS survival analysis, but SPSS not used to produce Figure.

Fail to show the event times as discrete downward steps, but rather as diagonal slopes, which appear manually curved.
Impossible % of recipients for coronary artery (RCA) 33.4% of 191 is not an integer number of patients. Could be 63 (33.0%) or 64 (33.5%)

Impossible % of recipients for coronary artery (LAD) 49.1% of 191 is not an integer number of patients. Could be 93 (48.7%) or 94 (49.2%)

Impossible % of recipients for coronary artery (RCX) 17.5% of 191 is not an integer number of patients. Could be 33 (17.3%) or 34 (17.8%)

Miscalculation of NYHA (Class) increments in recipients 3 month change is quoted as -0.9, miscalculating the actual change of -0.97

Miscalculation of NYHA increments in controls 12 month change is quoted as +0.46, miscalculating the actual change of +0.6

Miscalculation of LP in recipients change is quoted as -0.36, miscalculating the actual change of -0.4
Miscalculation of LP in controls
change is quoted as +0.87, miscalculating the actual change of +1.07 (Table 3, 60 months)

Miscalculation of VO2Peak increments in recipients
change is quoted as +158, miscalculating the actual change of +166 (Table 2)

Miscalculation of ∆VO2Peak in controls
change is quoted as -29.3, miscalculating the actual change of -7 (Table 2)

Miscalculation of ∆O2-Pulse in recipients
change is quoted as +0.52, miscalculating the actual change of +0.8 (Table 2)

Miscalculation of ∆O2-Pulse in controls
change is quoted as -0.9, miscalculating the actual change of -0.1 (Table 2)

Miscalculation of ∆Ergometry (Watt) in recipients
change is quoted as +11.3, miscalculating the actual change of +12 (Table 2)

Miscalculation of ∆Ergometry (Watt) in controls
change is quoted as -15.2, miscalculating the actual change of -17 (Table 2)
Miscalculation of ΔEDV in controls (Table 4, after 3 months) change is quoted as $+2.9$ miscalculating the actual change of $+1$

Miscalculation of ΔESV in recipients (Table 4, after 3 months) change is quoted as -15.9 miscalculating the actual change of -18

Miscalculation of ΔSVI in recipients (Table 4, after 3 months) change is quoted as $+4.45$ miscalculating the actual change of $+4.2$

Miscalculation of $\Delta P(systolic)/ESV$ in recipients (Table 4, after 3 months) change is quoted as $+0.29$ miscalculating the actual change of $+0.27$

Miscalculation of $\Delta P(systolic)/ESV$ in recipients (Table 5) change is quoted as $+0.29$ miscalculating the actual change of $+0.27$

Miscalculation of $\Delta Global T(systolic)$ in controls (Table 5) change is quoted as $+0.3$ miscalculating the actual change of $+0.1$
Miscalculation of ∆Infarct Size in recipients (Table 5) change is quoted as -4.5 miscalculating the actual change of -3.2.

Miscalculation of ∆Infarct Size in controls (Table 5) change is quoted as +1.8 miscalculating the actual change of +0.5.

Miscalculation of ∆Lown Classification in recipients (Table 6) change is quoted as -0.46 miscalculating the actual change of -0.53.

Miscalculation of ∆Heart Rate Variability in recipients (Table 6) change is quoted as +5.7 miscalculating the actual change of +5.5.

Miscalculation of ∆Heart Rate Variability in controls (Table 6) change is quoted as -2.67 miscalculating the actual change of -1.4.
Negative NYHA class in the control group post 12 months. NYHA rose from 3.06 by 0.46 to reach 3.66 at 12 months. The reason for the discrepancy can only be the death of one patient. We can calculate the patient's starting NYHA. The 199 twelve-month survivors must have had a starting NYHA of 3.66 - 0.46 = 3.20. Allowing for rounding error this must be at least 3.655 - 0.465 = 3.19, and at most 3.665 - 0.455 = 3.21.

For the baseline NYHA of all to average 3.06, the patient that died must have had a value "y" which fulfills $199 \times 3.20 + 1\times y = 200 \times 3.06$.

Missed significant change in CL-Rest for controls: -0.45 (SD 0.8), $p<0.01$.
Missed significant change in VO2 for controls
-29.3 (SD 120), p<0.01

Missed significant change in O2-Pulse
-0.9 (SD 1.2), p<0.01

Missed significant change in Ergometry
-15.2 (SD 8.7), p<0.01

Missed significant change in NYHA 3mo
+0.3 (SD 0.4), p<0.01

Missed significant change in NYHA 12 mo
+0.46 (SD 0.7), p<0.01

Missed significant change in NYHA 60 mo
+0.6 (SD 0.87), p<0.01

Missed significant change in LP 60 mo
+0.87 (SD 0.56), p<0.01

Missed significant change in ESV 3mo
+4.3 (SD 29.8), p<0.05
t07/346	Missed significant change in ESV 12mo	t07r1	t07r10	+4.6 (SD 31.2), p<0.05
t07/347	Missed significant change in ESV 60mo	t07r1	t07r10	+9.9 (SD 35.7), p<0.01
t07/348	Missed significant change in EF 60mo	t07r1	t07r10	-3.5 (SD 8.9), p<0.01
t07/349	Missed significant change in SVI 12mo	t07r1	t07r10	-1.8 (SD 8.1), p<0.01
t07/350	Missed significant change in SVI 60mo	t07r1	t07r10	-3.9 (SD 7.5), p<0.01
t07/351	Missed significant change in Psyst/ESV 12mo	t07r1	t07r10	-0.1 (SD 0.38), p<0.01
t07/352	Missed significant change in Psyst/ESV 60mo	t07r1	t07r10	-1.7 (SD 0.4), p<0.01
t07/353	Missed significant change in MNSER	t07r1	t07r10	-0.09 (SD 0.3), p<0.01
Missed significant change in Infarct Size

Missed significant change in HRV

Missed significant change in Lown Classification

Conducting LV-gram without noticing whether patient is alive or dead (recipient)
Median survival follow-up was 4.87 years, i.e., for half of the 200 controls, there was no knowledge of survival after 4.87 years. Yet the number of patients attending at 5 years for invasive assessment of EF etc. was >100. In fact it was 168. Therefore at least 68 patients underwent invasive LV-gram without the staff noticing whether they were alive or dead.
Questioning a patient without noticing whether patient is alive or dead (recipient)

Median survival followup was 4.6 years, i.e. for half the 191 patients, there was no knowledge of survival after 4.6 years. Yet the number of patients attending at 5 years to be questioned on symptom statue was >95. In fact it was 184. Therefore at least 89 patients underwent questioning to assess NYHA class without the staff noticing whether they were alive or dead.
Questioning a patient without noticing whether patient is alive or dead (control)

Median survival followup was 4.87 years, i.e. for half the 200 controls there was no knowledge of survival after 4.87 years. Yet the number of patients attending at 5 years to be questioned on symptom statue was >100. In fact it was 168. Therefore at least 68 patients described their symptom level without the staff noticing whether they were alive or dead.

Impossible % of controls for coronary artery (RCA)

31.2% of 200 is not an integer number of patients. Could be 62 (31.0%) or 63 (31.5%)
Impossible % for coronary artery (LAD)
50.7% of 200 is not an integer number of patients. Could be 100 (50.0%) or 101 (50.5%)

Impossible % for coronary artery (RCX)
18.1% of 200 is not an integer number of patients. Could be 36 (18.0%) or 37 (18.5%)

Failure of blinding (or inclusion of undisclosed methods)
Values incompatible with blinding: EF SD of sample narrower (2-5%), than the SD of replicate measurements in same patient.

Oxygen consumption BMC group
19% increase
Increase by 10-15%

Recipients increase by 24% and controls decrease by 12%

Ejection Fraction in the recipients
From 17±1 to 26±3 (+9%)
Ejection fraction improved ... by 44% in the [t08r2] trial.

Ejection fraction improved ... by 8% in the [t08r2] trial.
<table>
<thead>
<tr>
<th>t09/301</th>
<th>Discrepancy in timepoint of BMC transplantation after PCI</th>
<th>t09r3 p172 4±1 days</th>
<th>t09r6 5±1 days</th>
<th>t09r5 4±1 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>t09/302</td>
<td>Discrepancy in reported increase of HRV after 12 months in recipients</td>
<td>t09r3 p172 62.4±8.3</td>
<td>t09r6 52±26</td>
<td></td>
</tr>
<tr>
<td>t09/303</td>
<td>Discrepancy in reported increase of HRV after 12 months in controls</td>
<td>t09r3 p172 19.0±7.5</td>
<td>t09r6 26±2</td>
<td></td>
</tr>
<tr>
<td>t09/304</td>
<td>Discrepancy in reported increase of BRS after 12 months in recipients</td>
<td>t09r3 p172 8.0±1.8</td>
<td>t09r6 6.8±8.8</td>
<td>t09r5 8.7±6.3</td>
</tr>
<tr>
<td>t09/305</td>
<td>Discrepancy in reported increase of BRS after 12 months in controls</td>
<td>t09r3 p.172</td>
<td>-1.9±1.7</td>
<td>t09r6</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>-------------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>t09/306</td>
<td>Percentage incompatible with ratio, for deaths in controls at 12 month follow-up</td>
<td>t09r2</td>
<td>4/19=21%</td>
<td>t09r2</td>
</tr>
<tr>
<td>t09/306 continued</td>
<td>t09r3 p.175</td>
<td>4/19=21%</td>
<td>t09r3 p.175</td>
<td>24%</td>
</tr>
<tr>
<td>t09/307</td>
<td>Inconsistency in the percentage and number of deaths in recipients at 12 month follow-up</td>
<td>t09r2</td>
<td>2/19=10.5%</td>
<td>t09r2</td>
</tr>
<tr>
<td>t09/307 continued</td>
<td>t09r3 p.175</td>
<td>2/19=10.5%</td>
<td>t09r3 p.175</td>
<td>12%</td>
</tr>
</tbody>
</table>
Discrepancy in reported mean LVEF at baseline of the 19 recipients

Discrepancy in reported mean LVEF at baseline of the 19 controls

Discrepancy in reported SE or SD of LVEF at baseline of recipients - Paper 1 does is discrepant with either echo or SPECT data from paper 2, even allowing for SD to SE conversion.

<table>
<thead>
<tr>
<th>Table 3</th>
<th>SPECT Rest</th>
<th>also does not match baseline echo data either</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>36.6</td>
<td>37.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2</th>
<th>transthoracic echocardiography</th>
<th>SE: 1.3 (smaller deviation than controls)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>obtained by</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3</th>
<th>SPECT Rest</th>
<th>SE: 2.0 (smaller deviation than controls)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Discrepancy in reported SE or SD of LVEF at baseline of recipients - Paper 1 does is discrepant with either echo or SPECT data from paper 2, even allowing for SD to SE conversion.

Table 2 obtained by transthoracic echocardiography

SE: 1.5 (bigger deviation than recipients)

Table 3 SPECT Rest

SE: 2.3 (bigger deviation than recipients)

Percentage incompatible with ratio, for deaths in controls at 37 month follow-up

24% stated percentage 4/20=20%

Percentage incompatible with ratio, for deaths in recipients at 37 month follow-up

12% stated percentage 2/21=9.5%
Identical results (mean and SD) despite different numbers of recipients

t09/314
- n=19
- LVEF = 35.1±9.8
- LVEF increased after 12 months by 41%
- LVEDV increased after 12 months by 2%
- HRV after 12 months = 644ms
- HF after 12 months = 289.3±366 ms
- BRS after 12 months = 8.7±6.3 ms/mmHg

t09/315
- n=19
- LVEF = 36.2±9.4
- LVEF increased after 12 months by 25%
- LVEDV increased after 12 months by 12%
- HRV after 12 months = -20ms
- HF after 12 months = 85.7±216 ms
- BRS after 12 months = 3.4±11.7 ms/mmHg

Identical results (mean and SD) despite different numbers of controls

t09/314
- n=16
- LVEF = 35.1±9.8
- LVEF increased after 12 months by 41%
- LVEDV increased after 12 months by 2%
- HRV after 12 months = 644ms
- HF after 12 months = 289.3±366 ms
- BRS after 12 months = 8.7±6.3 ms/mmHg

t09/315
- n=17
- LVEF = 36.2±9.4
- LVEF increased after 12 months by 25%
- LVEDV increased after 12 months by 12%
- HRV after 12 months = -20ms
- HF after 12 months = 85.7±216 ms
- BRS after 12 months = 3.4±11.7 ms/mmHg
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4</td>
<td>Percentage incompatible with ratio for cardiac deaths in controls</td>
<td>15%</td>
<td>3/19=16%</td>
</tr>
<tr>
<td>Table 4</td>
<td>Discrepancy between number of deaths and percentage of cardiac deaths in recipients</td>
<td>10%</td>
<td>2/19=11%</td>
</tr>
<tr>
<td>Table 1</td>
<td>Mathematically impossible claim of baseline NYHA for recipients</td>
<td>No combination of integer values can produce a mean that can be rounded to 2.6 whilst having a standard deviation that can be rounded to 0.3</td>
<td></td>
</tr>
<tr>
<td>Table 3</td>
<td>Mathematically impossible claim of baseline NYHA for controls</td>
<td>No combination of integer values can produce a mean that can be rounded to 2.5 whilst having a standard deviation that can be rounded to 0.2</td>
<td></td>
</tr>
<tr>
<td>Table 1</td>
<td>Discrepancy between Tables in baseline ACS in BM recipients</td>
<td>ACS group 1: 32±12</td>
<td>ACS group 1: 33±12</td>
</tr>
<tr>
<td>Table</td>
<td>Discrepancy</td>
<td>Group</td>
<td>Baseline Value</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
<td>----------------</td>
</tr>
<tr>
<td>1</td>
<td>between Tables</td>
<td>ACS group 2</td>
<td>36±11</td>
</tr>
<tr>
<td>360</td>
<td>in baseline ACS</td>
<td>in GCSF recipients</td>
<td>Table 1 p</td>
</tr>
<tr>
<td>3</td>
<td>Discrepancy</td>
<td>ACS group</td>
<td>3:28±14</td>
</tr>
<tr>
<td>360</td>
<td>between Tables</td>
<td>Table 1 p</td>
<td>Table 3 p</td>
</tr>
<tr>
<td>3</td>
<td>Discrepancy</td>
<td>Affected radii group</td>
<td>1: 40±16</td>
</tr>
<tr>
<td>360</td>
<td>between Tables</td>
<td>Table 1 p</td>
<td>Table 3 p</td>
</tr>
<tr>
<td>3</td>
<td>Discrepancy</td>
<td>Affected radii group</td>
<td>2: 47±14</td>
</tr>
<tr>
<td>360</td>
<td>between Tables</td>
<td>Table 1 p</td>
<td>Table 3 p</td>
</tr>
<tr>
<td>3</td>
<td>Discrepancy</td>
<td>Affected radii group</td>
<td>3: 36±11</td>
</tr>
<tr>
<td>360</td>
<td>between Tables</td>
<td>Table 1 p</td>
<td>Table 3 p</td>
</tr>
<tr>
<td>3</td>
<td>Discrepancy</td>
<td>Ejection Fraction</td>
<td>2: 39±5</td>
</tr>
<tr>
<td>360</td>
<td>between Tables</td>
<td>Table 1 p</td>
<td>Table 3 p</td>
</tr>
<tr>
<td>3</td>
<td>Discrepancy</td>
<td>Ejection Fraction</td>
<td>3: 38±6</td>
</tr>
<tr>
<td>360</td>
<td>between Tables</td>
<td>Table 1 p</td>
<td>Table 3 p</td>
</tr>
</tbody>
</table>
Discrepancy in net gain in ACS in BM recipients
Table 4 p 361
Change given as -20
ACS 33 at baseline and 8 at follow-up

Discrepancy in net gain in ACS in GCSF recipients
Table 4 p 361
Change given as -12
ACS 39 at baseline and 25 at follow-up

Discrepancy in net gain in ACS in controls
Table 4 p 361
Change given as -6
ACS 27 at baseline and 16 at follow-up

Discrepancy in net gain in affected radii in BM recipients
Table 4 p 361
Change given as -26
Affected radii 47 at baseline and 24 at follow-up

Discrepancy in net gain in affected radii in controls
Table 4 p 361
Change given as -12
Affected radii 46 at baseline and 36 at follow-up
Trial reported as positive (p = 0.05), but revised data later indicate EF increment is substantially smaller, which implies that it should now be considered neutral.

Original presentation is that EF increment is +7.1 in 39 recipients. Subsequent revised data shows EF increment is 12.7 in 21 recipients and -0.8 in 18 recipients, so that group mean effect is +((12.7x21)+(-0.8x18))/39 = +6.5. On this basis the recipient versus control comparison gives p > 0.05. With best-case rounding, using 12.75 and -0.75 then mean is still 6.5.

Conflict on how many stem cell patients underwent 6 month LV angio.

"Adequate contrast opacification of left ventricular angiograms both at baseline and at 6 months were available for 36 patients in each group."
Conflict on how many controls underwent 6 month LV angio

Results

"Adequate contrast opacification of left ventricular angiograms both at baseline and at 6 months were available for 36 patients in each group."

Table 2

Table 3

Erroneous confidence interval of change in VPDs per h in recipients (median and presumably interquartile range)

0.4 (-0.6 to -0.4), ditto

Erroneous confidence interval of change in VPDs per h in control (median and presumably interquartile range)

0 (-0.9 to -1.4), ditto
Erroneous confidence interval of Treatment effect on QRS duration (median and presumably interquartile range)

table 3
0.37 (-5.4 to -6.2), ditto

Erroneous confidence interval of Treatment effect on duration less than 40μV (median and presumably interquartile range)

table 3
0.49 (-4.1 to -5.1), ditto

Erroneous confidence interval of Treatment effect on Maximum heart rate (median and presumably interquartile range)

table 3
0.41 (-1.11 to -0.32), ditto
<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
<th>Table/Section</th>
<th>Value</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>t12/309</td>
<td>Erroneous confidence interval of Treatment effect on METs (median and presumably interquartile range)</td>
<td>Table 3</td>
<td>0.41 (-1.11 – 0.12), ditto</td>
<td></td>
</tr>
<tr>
<td>t12/310</td>
<td>Discrepancy in increase in METS in stem cell group</td>
<td>Table 3</td>
<td>6.1 pre, 6.9 post</td>
<td>Increase stated to be 0.5</td>
</tr>
<tr>
<td>t12/311</td>
<td>Continuous-variable treatment effect given for a dichotomous variable</td>
<td>Table 3</td>
<td>T-wave alternans at baseline: -6.0 (-13.8 to -1.90)</td>
<td></td>
</tr>
<tr>
<td>t12/312</td>
<td>Two different confidence intervals with the same point estimate, given the same P value</td>
<td>Paper/Table 3</td>
<td>Maximum Heart Rate: 0.41 (-1.11 to -0.32), p=0.26</td>
<td>0.41 (-1.11 to -0.12), p=0.26</td>
</tr>
<tr>
<td>t12/313</td>
<td>Erroneous calculated change in EDV</td>
<td>Table 2</td>
<td>Change in EDV from 148 to 152 is change of +4 not +5.4</td>
<td></td>
</tr>
</tbody>
</table>
Contradictory mean for baseline wall motion scores in recipients

Table 1

No combination of integer values can produce a mean that can be rounded to 2.6 whilst having a standard deviation that can be rounded to 0.3.

Mathematically impossible claim of baseline NYHA in controls

No combination of integer values can produce a mean that can be rounded to 2.4 whilst having a standard deviation that can be rounded to 0.3.

Mathematically impossible claim of 6 months NYHA in controls

No combination of integer values can produce a mean that can be rounded to 2.3 whilst having a standard deviation that can be rounded to 0.2.
Mathematically impossible claim of 6 months CCS in controls

No combination of integer values can produce a mean that can be rounded to 2.6 whilst having a standard deviation that can be rounded to 0.3.

Absolute change of LVEF in high-dose shock wave recipients incompatible with values for baseline and 4 months

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Absolute change annotated as 3.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase from 32.4 to 35.5 is at most a change of 3.2 in mean allowing rounding</td>
<td></td>
</tr>
</tbody>
</table>

Absolute change of LVEF in high-dose shock wave controls incompatible with values for baseline and 4 months

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Absolute change annotated as 1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase from 32.3 to 34.0 is at least a change of 1.6 in mean allowing rounding</td>
<td></td>
</tr>
</tbody>
</table>

Absolute change of LVEF in placebo shock wave recipients incompatible with values for baseline and 4 months

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Absolute change annotated as 0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase from 33.4 to 34.4 is at least a change of 0.9 in mean allowing rounding</td>
<td></td>
</tr>
</tbody>
</table>
t16/304 Absolute change of EDVI in high-dose shock wave recipients incompatible with values for baseline and 4 months

t16r5 Table 2 Absolute change annotated as -1

Increase from 105 to 102 is at most a change of -2 in mean allowing rounding

t16/305 Absolute change of EDVI in high-dose shock wave controls incompatible with values for baseline and 4 months

t16r5 Table 2 Absolute change annotated as 6

Increase from 111 to 114 is at most a change of 4 in mean allowing rounding

t16/306 Absolute change of ESVI in high-dose shock wave controls incompatible with values for baseline and 4 months

t16r5 Table 2 Absolute change annotated as 2

Increase from 79 to 79 is at most a change of 1 in mean allowing rounding

t17/301 Discrepant change in contractility in the infarcted zone of the control group at 4 month followup

t17r4 Table 2 -1.54 at baseline to 1.27 at 4 months is a minimum difference of 2.8 (as explained in appendix)

Change given as 0.28
Discrepancy in the number of beta blocker receivers at discharge in the control subgroup relative to the overall number of control patients

The overall control group consisted only of 92 patients

95 patients received beta blockers, i.e. 103%

Stated percentage 100%

Contradiction between curve and annotation below Figure, in numbers of recipients at 360 days free of death, myocardial infarction, revascularisation

At 12 months, there is complete followup of recipients: "data could be completely acquired in the BMC group", which means the Kaplan-Meier plots curve should show exactly the raw event rate. If there are n patients exposed to risk, there have been exactly 101-n events, and the cumulative event rate is exactly (101-n)/101*100%

At 360 days, Kaplan-Meier curve shows event-free survival is 77%, i.e. 78 event-free survivors out of 101

At 360 days, annotation under x-axis shows number of event-free survivors to be only 66, i.e. a discrepancy of 12 events between annotation and curve
Contradiction between curve and annotation below Figure, in numbers of recipients at 360 days free of death, myocardial infarction, rehospitalisation for heart failure.

At 12 months, there is complete followup of recipients: "data could be completely acquired in the BMC group", which means the Kaplan-Meier plots curve should show exactly the raw event rate. If there are n patients exposed to risk, there have been exactly 101-n events, and the cumulative event rate is exactly (101-n)/101*100%

At 360 days, Kaplan Meier curve shows event-free survival is 98%, i.e. 99 event-free survivors out of 101.

At 360 days, annotation under x-axis shows number of event-free survivors to be only 85, i.e. a discrepancy of 14 events between annotation and curve.

Patient disappeared from analysis of death, myocardial infarction and revascularisation without having event and without being lost to followup.

No recipients lost to follow up before 12 months.

Number of event-free recipients falls by 3.

Kaplan-Meier curve shows exactly 2 recipients having events a between 200 and 300 days.
Patient disappeared from analysis of death, myocardial infarction and rehospitalisation for heart failure without having event and without being lost to followup.

No recipients lost to follow up before 12 months.

Number of event-free recipients falls by 1.

Kaplan-Meier curve shows no recipients having events a between 200 and 300 days.

Contradiction on whether the stroke volume is significantly different at 4 months in the control subgroup with EF > median.

Change is given as $6.3 \pm 14.4 \ (n=40)$, for which calculated P value should be 0.009.

Stated P value is 0.29.
t17/308	At least one control who had had an event at 200 days, by 400 days no longer had had that event.	t17r2 Fig 3A	55 controls event-free at 360 days	t17r2 p2777	3 controls had been lost to followup by 12 months	t17r1 Fig 3A	60 controls event-free at 400 days. Not possible even if all 55 event-free patients at 360 days remained event-free, and even if all 4 controls previously lost to followup were found and were event free, 55+3=58 so there are 2 "new" controls introduced
t17/309	At least 10 recipients who had had an event at 200 days, by 400 days no longer had had that event.	t17r2 Fig 3A	66 recipients event-free at 360 days	t17r2 p2777	At 12 months, no recipients had been lost to followup "data could be completely acquired in the BMC group"		
t17/310	At least seven controls who had had an event at 200 days, by 400 days no longer had had that event.	t17r2 Fig 3B	79 controls event-free at 360 days	t17r2 p2777	At 12 months, 4 controls had been lost to followup		
		t17r1 Fig 3B	90 controls event-free at 400 days				
At least 13 recipients who had had an event at 200 days, by 400 days no longer had had that event.

Inconsistent p value for EF between groups at baseline between abstract and Table

Inconsistent p value for EF between groups at 4 months between abstract and Table

Identical results, possible duplication (although contradictory sample sizes)

Reduction in infarct size

PET glucose uptake 42±8 pre, 50±12 after. EFs: 52±10 and 49±8 pre, 51±9 and 48±11 post, 53±10 and 55±10 three months post. Vo2 1465±533 pre and 1630±523 post.

PET glucose uptake 42±8 pre, 50±12 after. EFs: 52±10 and 49±8 pre, 51±9 and 48±11 post, 53±10 and 55±10 three months post. Vo2 1465±533 pre and 1630±523 post.

At 12 months, no recipients had been lost to followup

85 recipients event-free at 360 days

98 recipients event-free at 400 days

0.38 0.19

0.23 0.25

25% 30%
All 18 distant previous EFs had been performed, identical mean and standard deviation as the 16 IACT patients. An unchanged or even impaired LV function was not observed in any patient. Patient 14: Ejection fraction 62% at the distant pre-test; 62% at stem cell injection; 61% at 3 months after.

Performed in only 12 patients. 43.8±8 pre, 50.5±11.6 post.

Performed in all 18 patients. 43.8±8 pre, 50.5±11.6 post.

"FCI was 2.38 ± 0.26 and 2.2 ± 0.20 in the recipient and control groups before treatment. There was a significant difference between these values."

T-test gives p=0.59.
Reporting of non-significant difference in functional class index as significant

"The difference in FCI between the bone marrow and control groups was significant after 6 months." 1.13 ± 0.12 and 1.06 ± 0.24

T-test gives p=0.80

The Table indicates that control arm indicated to have a significant rise in EF, and recipient arm non-significant; this is opposite to conclusion of paper.

Contradiction in p-values for LVEF increase in control arm

p=0.1

p<0.05

Describing of non-significant difference in LVEF as significant

"In the bone marrow group, the LVEF increased to 39.37 ± 2.47% in 6 months which was significantly different (P = 0.069)"

"Statistical significance was assumed at a level of P<0.05."
Impossible mean and SEM of final NYHA in Controls

For 16 patients, Mean NYHA can only be 1.06 if 1 is in NYHA II and 15 in NYHA I.
But in that case SEM is 0.06, rather than the 0.24 described.
For 10 patients, Mean NYHA cannot be 1.06.

Impossible mean and SEM of final NYHA in Recipients

For 16 patients, Mean NYHA can only be 1.13 if 2 are in NYHA II and 14 in NYHA I.
But in that case SEM is 0.09, rather than the 0.12 described.
For 10 patients, Mean NYHA cannot be 2.38 or 1.13.

Contradictory p values for perfusion defect score and ambiguity about which group had a significant difference

"PDSs decreased to 21.88 ± 4.27 and 31.00 ± 4.50 in the bone marrow treated and control groups, respectively, the difference was only significant in the [treated] group (P ≤0.05)
Neither group has a change meeting criteria for statistical significance. In fact the control group is closer to the boundary of statistical significance than the recipient group.

Percentage incompatible with ratio, for controls with CCS angina class > 2 before surgery

35% 7/19=37%

Percentage incompatible with ratio, for controls with NYHA 3-4 before surgery

15% 3/19=16%
t26/301	Discrepancy in change in Duration PV R in controls	t26r1 Table 2	Change listed as	t26r1 Table 2	132 at baseline to 142 at 4 months
t26/302	Discrepancy in change in Duration PV R in recipients	t26r1 Table 2	Change listed as 9	t26r1 Table 2	127 at baseline to 138 at 4 months
t26/303	Discrepancy in change in E/E' in recipients	t26r1 Table 2	Change listed as -0.3	t26r1 Table 2	11.1 at baseline to 11.0 at 4 months
t26/304	Discrepancy in change in PV R in controls	t26r1 Table 2	Change listed as 0.00	t26r1 Table 2	0.28 at baseline to 0.30 at 4 months
t26/305	Discrepancy in change in late contrast enhancement in controls	t26r2 Table 2	Change listed as 7.9	t26r2 Table 2	22.3 at baseline to 14.7 at 4 months
t26/306	Discrepancy in change in global LVEF in controls	t26r1 Table 2	Change listed as 5.0	t26r1 Table 2	53.0 at baseline to 57.8 at 4 months
t27/301	Impossible % patients with target vessel LAD	t27r1 Table 3	44% of 22 is not an integer number of patients. Possible integer numbers of patients would be 9 (41%) and 10 (45%).		
Impossible % patients with target vessel RCA

30% of 22 is not an integer number of patients. Possible integer numbers of patients would be 6 (27%) and 7 (32%).

Impossible % patients with target vessel LCX

26% of 22 is not an integer number of patients. Possible integer numbers of patients would be 5 (23%) and 6 (27%).

Impossible % patients with target vessel LAD

46% of 21 is not an integer number of patients. Possible integer numbers of patients would be 9 (43%) and 10 (48%).

Impossible % patients with target vessel RCA

36% of 21 is not an integer number of patients. Possible integer numbers of patients would be 7 (33%) and 8 (38%).
Impossible % patients with target vessel LCX

18% of 21 is not an integer number of patients. Possible integer numbers of patients would be 3 (14%) and 4 (19%).

Discrepancy in baseline reported SD between Tables

Control group baseline IL-6 SD: Table 1 1.86 Table 2 3.11

Discrepancy in baseline values between Tables

Control group baseline TNF-alpha mean ± SD: Table 1 4.02 ± 3.11 Table 2 4.22 ± 3.14

Discrepancy in baseline values between Tables

Control group baseline QTc mean ± SD: Table 1 481 ± 55 Table 2 482 ± 26

Contradicting numbers of patients with nsVT in active group on follow-up

3 (13) Table 4 9 (25) Table 3
Fractional patients (impossible %)

Discrepant mean for infarct size at 3 months in Group C

Discrepant standard deviation for 3 month infarct size in Group C

Discrepant mean for 6 month viable area in Group C
t29/304
Discrepant mean for 12 month viable area in Group C

- Table 1
- Individual patient values of 0.08 and 0.15 whose mean is 0.115. If the cells marked "-" are taken as zero, the mean is 0.0575 (or at least 0.055 if the nonzero values have been rounded)
- Mean is given as 0.05

t29/305
Discrepancy in MBF in noninfarct area in group B between table and figure

- Table 2
- Mean % decrease from baseline to 3 months is >15%
- Figure 4 righthand panel
- Figure shows the decrease to be much less than 15% (appears to be 11%). Not explainable by rounding.

t29/306
Discrepancy in MBF in noninfarct area in group B between table and figure

- Table 2
- Mean % decrease from baseline to 12 months is <20%
- Figure 4 righthand panel
- Figure shows a clearly >50% (appears to be 59%) decrease from baseline to 12 months

t30/301
The stated change in the variable contradicts the stated baseline and followup values

- Table 1
- Baseline percentage of transmural MI extent in recipients = 59
- Table 2
- 6 month percentage of transmural MI extent in recipients = 62
- Table 2
- Difference listed as 1, but should be 3 (even with rounding, cannot be less than 2)
The stated change in the variable contradicts the stated baseline and followup values.

Discrepant change in LVEF from baseline to 6 months in controls.

Change from 48.6% to 57%, so an increase of 8.4%.

Discrepant mean LVEF at 6 months in recipients.

Discrepant SD of LVEF at 6 months in recipients.

Discrepant mean LVEF at 6 months in controls.

Discrepant SD of LVEF at 6 months in controls.

Unexplained P value.

Extra p value of 0.20 at top of Table.
Mathematically impossible claim of 3 month NYHA in recipients

No combination of integer values can produce a mean that can be rounded to 2.4 whilst having a standard deviation that can be rounded to 0.2 (as explained in appendix)

Mathematically impossible claim of 6 month NYHA in recipients

No combination of integer values can produce a mean that can be rounded to 2.3 whilst having a standard deviation that can be rounded to 0.2

Mathematically impossible claim of 6 month NYHA in controls

No combination of integer values can produce a mean that can be rounded to 3.8 whilst having a standard deviation that can be rounded to 0.1
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>t34/304</td>
<td>Mathematically impossible claim of 12 month NYHA in recipients</td>
<td>No combination of integer values can produce a mean that can be rounded to 2.5 whilst having a standard deviation that can be rounded to 0.1.</td>
</tr>
<tr>
<td>t34/305</td>
<td>Mathematically impossible claim of 12 month NYHA in controls</td>
<td>No combination of integer values can produce a mean that can be rounded to 3.9 whilst having a standard deviation that can be rounded to 0.1.</td>
</tr>
<tr>
<td>t34/306</td>
<td>Mathematically impossible claim of 12 month CCS in recipients</td>
<td>No combination of integer values can produce a mean that can be rounded to 1.6 whilst having a standard deviation that can be rounded to 0.4.</td>
</tr>
</tbody>
</table>
Mathematically impossible claim of 12 month CCS in controls

No combination of integer values can produce a mean that can be rounded to 3.5 whilst having a standard deviation that can be rounded to 0.4

3-month change in NYHA amongst recipients is mathematically impossible

25 improved by 1 and 7 improved by 2, so those 54 survivors dropped by $39/54 = 0.7222$. For the stated drop from 3.3 (in 55) to 2.4, i.e. change of -0.9, would require the extra initial patient to have NYHA of at least $55 \times 3.25 - 54 \times 2.45 - 39$.

6-month change in NYHA amongst recipients is mathematically impossible

29 improved by 1 and 7 improved by 2, so those 53 survivors dropped by $43/53 = 0.81$. For the stated drop from 3.3 (in 55) to 2.3, i.e. change of -1, would require the both extra initial patients to have NYHA of at least 5.6

3-month change in NYHA standard deviation amongst the control is mathematically impossible

4 improved by 1, so the SD could not increase by more than 0.2 units, while annotated in the Table rose from 0.1 to 0.8

Contradiction on P value

1 month: LVEF difference between groups: $P<0.001$

Medically impossible NYHA class in recipient postoperatively

NYHA 0
Medically impossible NYHA class in recipient postoperatively

NYHA 0

NYHA 0

NYHA 0

NYHA 0.7

Discrepancy in PI-IRA dip at 3 months in controls

PI-IRA dip at 3 months for controls: 2.86 ±0.61

Mean > 2.9

0

Discrepancy in PI-IRA dip at 6 months in controls

PI-IRA dip at 6 months for controls: 3.06 ±0.46

Mean > 3.1

Discrepancy in PI-IRA dip at 6 months in recipients

PI-IRA dip at 6 months for recipients: 2.63 ±0.77

Mean < 2.6
Discrepancy in PI-IRA dip at 12 months in recipients

Table 3

PI-IRA dip at 12 months for recipients: 2.71 ±0.63

Figure 3

Mean < 2.7

Impossible SD for baseline NYHA of recipients

Table 2

No combination of integer values can produce a mean that can be rounded to 2.4 whilst having a standard deviation that can be rounded to 0.4

Wrong SD shown by error bars in recipient

Table 3

Error bar indicates SD of at most 0.4

Wrong SD shown by error bars

Table 3

Error bar indicates SD of at most 0.6

Wrong SD shown by error bars

Table 3

Error bar indicates SD of at most 0.5

Wrong SD shown by error bars

Table 3

Error bar indicates SD of at most 0.6

Conflicting number of deaths amongst recipients at 3 years

Table 1

12 recipients died by 3 years

10 recipients died by 3 years

12 recipients died by 3 years
Table 1

- 14 controls died by 3 years
- 12 controls died by 3 years

Of 41 recipients, by 3 years 12 (or 10) had died and
4+22+6+9=41 had NYHA Classes; but
10 or 12 were dead

Measurements seemingly made in patients who were dead

10 of 45 recipients died before 3 years and 2 were lost to follow up, leaving only 33 recipients who could have had 3-year measurements

Mathematically impossible claim of baseline NYHA for recipients

24 patients, 6 with Class IV. Mean±SD is given as 3.3±0.5. Either must be (6 IV + 18 III) or (6 IV + 17 III + 1 II) which gives 3.3±0.4 or 3.2±0.5

Conflicting follow-up

28 months Follow-up

2.8 years (33.6 months) Follow-up.
Confusion over number and proportion of control patients who were dead at 3 years

Discrepant % mortality at 3 years

Baseline values of two different parameters quoted as baseline and 3 year follow up in another publication

Sum of controls in the 4 NYHA classes at study end exceeds those that entered

Percentage incompatible with ratio, for beta blockers at 3 years in recipients
3 year EF values of the recipient group contradict the combined values of its two parts.

At baseline Table 1 shows there were 12 recipients in NYHA IV and 29 in NYHA III. The text reports that 6 of the NYHA IV patients died, and 10 died overall i.e. 4 of the NYHA III died. This means those surviving to 3 years were composed of 12-6=6 who had begun in NYHA IV, and 29-4=25 who had begun in NYHA III.

Of the recipients surviving to 3 years, the 25 who had originally been in NYHA III had mean final EF of 30.1% and the 6 who had originally been in NYHA IV had mean final EF of 24%. The overall mean EF for the recipients should therefore be

\[(6/31)*24% + (25/31)*30.1% = 28.9\%\]

[Even if the 24% is a rounding of some value between 23.5% and 24.499%, the calculation comes to somewhere between 28.8% and 28.9%]

The contradiction remains even if the "24%" is a rounded value originating anywhere between 23.5% and 24.499%. It remains even if the number of recipients who died was not 10 (as reported in text) but 12 (as reported in the Table 1).

SEMs appear in places to be expressed in different units from the means.

EFs in text 0.484±0.5, presumably intended to read 0.484±0.005
SEM appearances in places to be expressed in different units from the means

EFs in text 0.457±0.6, presumably intended to read 0.457±0.006

EFs in text 0.482±0.7, presumably intended to read 0.482±0.007

EFs in text 0.446±0.6, presumably intended to read 0.446±0.006

EFs in text 0.505±0.8, presumably intended to read 0.505±0.008

EFs in text 0.464±0.8, presumably intended to read 0.464±0.008 etc

Data shown for dead patients at 1 and 3 months for IWT, IWMV, LVESD, LVEDD, EF, LVFS

Methods n=17/18 and n=16/18 at 1 month and 3 months respectively due to patient deaths
More controls in results than were randomized.

Figure 1 LVEF panel, page 1833

More than 18 lines for controls drawn, e.g. in 3-6 month time period

More recipients in results than were randomized.

Figure 1 LVFS panel

More than 18 lines for recipients drawn, e.g. in 3 to 6 month time period

More recipients in results than were randomized.

Figure 1 LVEDD panel

More than 18 lines for recipients drawn, e.g. in 1 to 3 month time period

More operations took place than patients

Table 2

MN-BMC group has 18 patients

11 OPCAB and 3 CABG+MVP and 4 CABG+SVR and 1 CABG+MVP+SVR is 19

More operations took place than patients

Table 2

Control group has 18 patients

11 OPCAB and 2 CABG+MVP and 4 CABG+SVR and 2 CABG+MVP+SVR is 19
Impossible summary statistic discrepant with individual patient data provided.

Baseline IWT (Table 4) in recipients has SD 0.57.

Range of IWT is no wider than 1.7 to 2.7. SD of a distribution of this width cannot be larger than 0.5*sqrt(18/17)=0.51 (as explained in appendix).

Baseline IWT (Table 4) in controls has SD 0.78.

Range of IWT is no wider than 1.7 to 2.7. SD of a distribution of this width cannot be larger than 0.5*sqrt(18/17)=0.51 (as explained in appendix).

1 month IWT (Table 4) in controls has SD 0.75.

Range of IWT is no wider than 1.7 to 2.7. SD of a distribution of this width cannot be larger than 0.5*sqrt(17/16)=0.52.

3 month IWT (Table 4) in recipients has SD 0.81.

Range of IWT is no wider than 2.7 to 4.1. Maximum possible SD of a distribution of this width is 0.7*sqrt(16/15)=0.72.
Table 4

3 month IWT (Table 4) in controls has SD 0.6.

Range of IWT is no wider than 1.9 to 2.8. Maximum possible SD of a distribution of this width is 0.45*sqrt(16/15)=0.46

6 month IWT (Table 4) in controls has SD 0.67.

Range of IWT is no wider than 2.2 to 2.8. Maximum possible SD of a distribution of this width is 0.3*sqrt(16/15)=0.31

1 month IWMV (Table 4) in controls has SD 1.05.

Range of IWMV is no wider than 2 to 3.5. Maximum possible SD of a distribution of this width is 0.75*sqrt(17/16)=0.77

3 month IWMV (Table 4) in controls has SD 0.95.

Range of IWMV is no wider than 2.2 to 3.4. Maximum possible SD of a distribution of this width is 0.6*sqrt(16/15)=0.62
Impossible summary statistic discrepant with individual patient data provided.

Table 4

6 month IWMV (Table 4) in recipients has SD 1.17.

Range of IWMV is no wider than 3.7 to 5. Maximum possible SD of a distribution of this width is $0.65\times\sqrt{16/15}=0.67$.

6 month IWMV (Table 4) in controls has SD 0.66.

Range of IWMV is no wider than 2.3 to 3.3. Maximum possible SD of a distribution of this width is $0.5\times\sqrt{16/15}=0.52$.

Baseline LVEDd (Table 4) in recipients has SD 10.17.

Range of LVEDd is no wider than 58 to 68. Maximum possible SD of a distribution of this width is $5\times\sqrt{18/17}=5.14$.

Baseline LVEDd (Table 4) in controls has SD 9.21.

Range of LVEDd is no wider than 58 to 68. Maximum possible SD of a distribution of this width is $5\times\sqrt{18/17}=5.14$.
Impossible summary statistic discrepant with individual patient data provided.

Table 4

- **1 month LVEDd (Table 4)** in recipients has SD 6.92.
- **1 month LVEDd (Table 4)** in controls has SD 8.38.
- **3 month LVEDd (Table 4)** in controls has SD 10.35.
- **6 month LVEDd (Table 4)** in recipients has SD 7.25.

Figure 1

Range of LVEDd is no wider than 57 to 69. Maximum possible SD of a distribution of this width is $6 \cdot \sqrt{17/16} = 6.18$.

Range of LVEDd is no wider than 56 to 69. Maximum possible SD of a distribution of this width is $6.5 \cdot \sqrt{17/16} = 6.70$.

Range of LVEDd is no wider than 47 to 65. Maximum possible SD of a distribution of this width is $9 \cdot \sqrt{16/15} = 9.30$.

Range of LVEDd is no wider than 46 to 57. Maximum possible SD of a distribution of this width is $5.5 \cdot \sqrt{16/15} = 5.68$.
Impossible summary statistic discrepant with individual patient data provided.

6 month LVEDd (Table 4) in controls has SD 9.53.

Range of LVEDd is no wider than 46 to 63. Maximum possible SD of a distribution of this width is $8.5 \times \sqrt{\frac{16}{15}} = 8.78$

Baseline EF (Table 4) in recipients has SD 7.28.

Range of EFs is no wider than 29 to 40. Maximum possible SD of a distribution of this width is $5.5 \times \sqrt{\frac{18}{17}} = 5.66$

Baseline EF (Table 4) in controls has SD 9.15.

Range of EFs is no wider than 28 to 40. Maximum possible SD of a distribution of this width is $6 \times \sqrt{\frac{18}{17}} = 6.17$

1 month EF (Table 4) in recipients has SD 10.36.

Range of EFs is no wider than 29 to 41. Maximum possible SD of a distribution of this width is $6 \times \sqrt{\frac{17}{16}} = 6.18$
1 month EF (Table 4) in controls has SD 7.81. Range of EFs is no wider than 27 to 41. Maximum possible SD of a distribution of this width is $7\sqrt{17/16}=7.22$

3 month EF (Table 4) in recipients has SD 8.76. Range of EFs is no wider than 36 to 47. Maximum possible SD of a distribution of this width is $5.5\sqrt{16/15}=5.68$

3 month EF (Table 4) in controls has SD 11.46. Range of EFs is no wider than 30 to 47. Maximum possible SD of a distribution of this width is $8.5\sqrt{16/15}=8.78$

6 month EF (Table 4) in recipients has SD 9.68. Range of EFs is no wider than 44 to 53. Maximum possible SD of a distribution of this width is $4.5\sqrt{16/15}=4.65$
Baseline LVFS (Table 4) in controls has SD 6.72. Range of baseline LVFS is no wider than 21 to 28. Maximum possible SD of a distribution of this width is $3.5 \times \sqrt{\frac{18}{17}} = 3.60$

1 month LVFS (Table 4) in recipients has SD 5.21. Range of baseline LVFS is no wider than 21 to 28. Maximum possible SD of a distribution of this width is $3.5 \times \sqrt{\frac{17}{16}} = 3.61$

3 months LVFS (Table 4) in controls has SD 6.79. Range of baseline LVFS is no wider than 22 to 30. Maximum possible SD of a distribution of this width is $4 \times \sqrt{\frac{16}{15}} = 4.13$

3 months LVFS (Table 4) in recipients has SD 5.1. Range of baseline LVFS is no wider than 21 to 30. Maximum possible SD of a distribution of this width is $4.5 \times \sqrt{\frac{16}{15}} = 4.65$
Impossible summary statistic discrepant with individual patient data provided.

Table 4
6 months LVFS (Table 4) in recipients has SD 6.46.

Figure 1
Range of baseline LVFS is no wider than 25 to 33. Maximum possible SD of a distribution of this width is $4\sqrt{16/15}=4.13$

At least one recipient has no EF measurement at 1 month (no black square).

At least one recipient without an IWT measurement (no black square) at 3 months.

At least one recipient without an IWMW measurement (no black square) at 3 months.

Change could be either from 7.28 to 9.94 or 10.12. This is 2.66 or 2.84

Change given as 3.21
Discrepant change in Ds in controls
Change could be either from 6.7 to 7.77 or 7.86. This is 1.07 or 1.16

Results
Analysis of segmental LV function

Change given as 0.76

Data becomes more widely spread but SD apparently shrinks
The SD has reduced from 1 week to 6 months, whereas the lines plotted show an increase in spread and therefore SD.

Numerical SD gets larger but graphical counterpart gets smaller
SD increases from 2.8 at 1 week to 3.2 at 6 months

Error bar representing SD becomes smaller from 1 week to 6 months

Infarct Size
8% reduction

Ejection Fraction
4.6% increase

Change in end Systolic Volume ml
-3.6ml

Cell preparation
No overnight cultivation

Cells cultivated overnight before administration (explained in the references 6-8 of t49r2 which are t49r6, t49r7, t21r5)
8-fold overstatement of increase in "normalised systolic ejection rate" in recipients from 1.78±0.69 to 1.98±0.77. Change is quoted as +1.6, contradicting actual change of +0.20.

10-fold overstatement of increase in "normalised systolic ejection rate" in controls from 1.8±0.71 to 1.83±0.76. Change is quoted as +0.32, contradicting actual change of +0.03.

2-fold overstatement of increase in stroke volume index in recipients from 38.9±10 to 43±8. Change is quoted as +6.4, contradicting actual change of +4.1.

Miscalculation of EF increments in recipients (This, and the ones that follow, is inconsistent by more than rounding error) 12 month change is quoted as +6.9, overstating actual change of +6.7. 60 month change is quoted as +4.6, misstating actual change of +5.3.

Overstatement of EF declines in controls 12 month change is quoted as -2.3, overstating actual change of -1.3. 60 month change is quoted as -5.8, overstating actual change of -3.9.
<table>
<thead>
<tr>
<th>Page Reference</th>
<th>Issue Description</th>
<th>Table/Method Reference</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>t49/310</td>
<td>Miscalculation of EDV increments in recipients</td>
<td>(Table 2, 12 months)</td>
<td>60 month change is quoted as +7.2, overstating actual change of -3</td>
</tr>
<tr>
<td>t49/311</td>
<td>Miscalculation of EDV changes in controls</td>
<td>(Table 2, 12 months)</td>
<td>12 month change is quoted as 4.9, overstating actual change of 3</td>
</tr>
<tr>
<td>t49/312</td>
<td>Miscalculation of ESV increments in recipients</td>
<td>(Table 2, 12 months)</td>
<td>60 month change is quoted as -3.6, misstating actual change of -9.8</td>
</tr>
<tr>
<td>t49/313</td>
<td>Miscalculation of ESV declines in controls</td>
<td>(Table 2, 12 months)</td>
<td>3 month change is quoted as -3.1, misstating actual change of -4.8</td>
</tr>
<tr>
<td>t49/313</td>
<td>Continued</td>
<td></td>
<td>12 month change is quoted as 6.2, overstating actual change of 3.5</td>
</tr>
<tr>
<td>t49/314</td>
<td>Survival methodology described in contradictory ways</td>
<td>(Methods)</td>
<td>Kaplan-Meier regression: these methods are opposites.</td>
</tr>
<tr>
<td>t49/315</td>
<td>Kaplan Meier plots are not Kaplan Meier plots</td>
<td>(Figure 4)</td>
<td>Fail to show the event times as discrete downward steps, but rather as diagonal slopes (with one "event" developing gradually over >2 years)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Reference to SPSS survival analysis, but SPSS not used to produce Figure)</td>
<td></td>
</tr>
<tr>
<td>t49/316</td>
<td>Impossible % of recipients with Infarct Related Coronary Artery - RCA (Table 1)</td>
<td>32.6% of 62 is not an integer number of patients. Could be 20 (32.3%) or 21 (33.9%).</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>t49/317</td>
<td>Impossible % of recipients with Infarct Related Coronary Artery - LAD (Table 1)</td>
<td>48.8% of 62 is not an integer number of patients. Could be 30 (48.4%) or 31 (50.0%).</td>
<td></td>
</tr>
<tr>
<td>t49/318</td>
<td>Impossible % of recipients with Infarct Related Coronary Artery - RCX (Table 1)</td>
<td>18.6% of 62 is not an integer number of patients. Could be 11 (17.7%) or 12 (19.4%).</td>
<td></td>
</tr>
<tr>
<td>t49/319</td>
<td>Impossible % of controls on statin (Table 1)</td>
<td>91% of 62 is not an integer number of patients. Could be 56 (90%) or 57 (92%).</td>
<td></td>
</tr>
<tr>
<td>t49/320</td>
<td>Impossible % of recipients on beta-blocker (Table 1)</td>
<td>93% of 62 is not an integer number of patients. Could be 57 (92%) or 58 (94%).</td>
<td></td>
</tr>
<tr>
<td>t49/321</td>
<td>Impossible % of controls with hyperlipidemia (Table 1)</td>
<td>91% of 62 is not an integer number of patients. Could be 56 (90%) or 57 (92%).</td>
<td></td>
</tr>
<tr>
<td>t49/322</td>
<td>Impossible % of controls who are smokers (Table 1)</td>
<td>54% of 62 is not an integer number of patients. Could be 33 (53%) or 34 (55%).</td>
<td></td>
</tr>
<tr>
<td>t49/323</td>
<td>Impossible % of controls with obesity (Table 1)</td>
<td>57% of 62 is not an integer number of patients. Could be 35 (56%) or 36 (58%).</td>
<td></td>
</tr>
<tr>
<td>t49/324</td>
<td>Missed significant change for recipients in EDV at 60 months (Table 2)</td>
<td>+7.2 (SD 17.7), p<0.01</td>
<td></td>
</tr>
<tr>
<td>t49/325</td>
<td>Missed significant change for recipients in ESV 60 mo (Table 2)</td>
<td>-3.6 (SD 13.5), p<0.05</td>
<td></td>
</tr>
<tr>
<td>t49/326</td>
<td>Missed significant change for recipients in EF 60 mo (Table 2)</td>
<td>+4.6 (SD 6.6), p<0.01</td>
<td></td>
</tr>
<tr>
<td>t49/327</td>
<td>Missed significant change for recipients in SVI 12 mo (Table 2)</td>
<td>+4.7 (SD 8.7), p<0.01</td>
<td></td>
</tr>
</tbody>
</table>
Missed significant change for recipients in SVI 60 mo

+6.4 (SD 6.5), p<0.01 (Table 2)

Missed significant change for controls in EDV 3 mo

-3 (SD 10), p<0.05 (Table 2)

Missed significant change for controls in EDV 12 mo

+4.9 (SD 14.5), p<0.01 (Table 2)

Missed significant change for controls in EDV 60 mo

+11.6 (SD 20.2), p<0.01 (Table 2)

Missed significant change for controls in ESV 3 mo

-3.1 (SD 7.7), p<0.01 (Table 2)

Missed significant change for controls in ESV 12 mo

+6.2 (SD 9.7), p<0.01 (Table 2)
Missed significant change for controls in ESV 60 mo (Table 2) t49r3 +15.9 (SD 14.9), p<0.01

Missed significant change for controls in EF 3 mo (Table 2) t49r3 +1 (SD 1.98), p<0.01

Missed significant change for controls in EF 12 mo (Table 2) t49r3 -2.3 (SD 2.7), p<0.01

Missed significant change for controls in EF 60 mo (Table 2) t49r3 -5.8 (SD 4), p<0.01

Missed significant change for controls in SVI 12 mo (Table 2) t49r3 -1.24 (SD 3.5), p<0.05

Missed significant change for controls in SVI 60 mo (Table 2) t49r3 -6.7 (SD 13.9), p<0.01
Missed significant change for controls in MNSER (Table 3) +0.32 (SD 0.9), p<0.01

Missed significant change for controls in Psyst/ESV (Table 3) +0.13 (SD 0.33), p<0.05

Missed significant change for controls in Infarct Size (Table 3) +5.3 (SD 12.9), p<0.01

Missed significant change in Control infarcted - T-End Diastolic (Table 4) +0.5 (SD 1.2), p<0.01

Missed significant change in Control - non-infarcted - T-End systolic (Table 4) +0.8 (SD 2.1), p<0.01

Missed significant change for controls in LP (simson) (Table 5) +0.5 (SD 0.77), p<0.01
<table>
<thead>
<tr>
<th>t49/346</th>
<th>Missed significant change for controls in HRV (Table 5)</th>
<th>t49r3</th>
<th>-3.5 (SD 8.3), p<0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>t49/347</td>
<td>Missed significant change for controls Lown class (Table 5)</td>
<td>t49r3</td>
<td>+0.48 (SD 1), p<0.01</td>
</tr>
<tr>
<td>t49/348</td>
<td>Impossible % of controls with Infarct Related Coronary Artery - RCA (Table 1)</td>
<td>t49r3</td>
<td>28% of 62 is not an integer number of patients. Could be 17 (27%) or 18 (29%).</td>
</tr>
<tr>
<td>t49/349</td>
<td>Impossible % of controls with Infarct Related Coronary Artery - RCX (Table 1)</td>
<td>t49r3</td>
<td>20% of 62 is not an integer number of patients. Could be 12 (19%) or 13 (21%).</td>
</tr>
</tbody>
</table>