
Demystifying trial networks and networkmeta-analysis
Networks of randomized clinical trials can be evaluated in the context of a network meta-analysis,
a procedure that permits inferences into the comparative effectiveness of interventions that may or
may not have been evaluated directly against each other.This approach is quickly gaining popularity
among clinicians and guideline decision makers. However, certain methodological aspects are
poorly understood. Here, we explain the geometry of a network, statistical and conceptual
heterogeneity and incoherence, and challenges in the application and interpretation of data synthesis.
These concepts are essential to make sense of a network meta-analysis.
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Introduction
When multiple interventions have been used and compared for
the same disease and outcomes, network meta-analysis (also
commonly referred to as a multiple treatment comparison
meta-analysis or mixed treatment meta-analysis) offers a set of
methods to visualize and interpret the wider picture of the
evidence and to understand the relative merits of these multiple
interventions.1 Network meta-analysis has advantages over
conventional pairwise meta-analysis, as the technique borrows
strength from indirect evidence to gain certainty about all
treatment comparisons and allows for estimation of comparative
effects that have not been investigated head to head in
randomized clinical trials.2 For this reason, network
meta-analysis is quickly gaining popularity among clinicians,
guideline developers, and health technology agencies as new
evidence on new interventions continues to surface and needs
to be placed in the context of all available evidence for
appraisals.3 For example, over the past two decades more than
20 randomized clinical trials have investigated the long term
(>12 months) effects of several variants of warfarin and aspirin
as well as other drug treatments for the prevention of stroke in
patients with non-rheumatic atrial fibrillation. This accumulation
of evidence on multiple treatments has resulted in a network of
interventions and comparisons (such as the resulting treatment
network, fig 1⇓) that constitutes the randomized evidence
between all interventions. In contrast to conventional pairwise
meta-analysis, network meta-analysis can provide estimates of
relative efficacy between all interventions, even though some
have never been compared head to head. For many comparisons,

the networkmeta-analysis may yieldmore reliable and definitive
results than would a pairwise meta-analysis.
In spite of the increasing popularity and widespread use network
meta-analysis, certain methodological and interpretational
aspects are poorly understood. The strength of evidence and
risk of bias for each of the involved comparisons and in the
treatment network as a whole4; the analytical challenges, tools,
and opportunities in detecting and exploring heterogeneity
within and between comparisons5; and the interpretation of
widely used statistical models and effect measures are all matters
that deserve further elucidation to ensure high quality synthesis
of evidence in the setting of multiple interventions.6 Here, we
aim to demystify these key challenges and opportunities offered
by trial networks and network meta-analyses in the context of
a working example of interventions for preventing stroke in
patients with non-rheumatic atrial fibrillation.7

Part 1: network geometry
A key element to understanding a treatment network is the
evaluation of its geometry.8 That is, which of the considered
treatments (nodes) have been compared head to head in
randomized controlled trials, which of the considered treatments
are connected indirectly through one or more “common
comparators,” and what is the level of evidence informing each
comparison. By examining the connections between
interventions in a graphical way, as in figure 1⇓, a reader can
determine how strong the evidence is for the treatment network
as a whole and for the individual comparisons, whether specific
comparisons are over-represented or under-represented, and
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whether the network is well connected. The better connected a
network is, the more reliable the estimates it provides will be.
Figure 1⇓ illustrates an example of the geometry in a treatment
network. This figure includes 34 randomized pairwise
comparisons, of which warfarin (n=20), aspirin (n=16), and
placebo (n=12) have the most links.7 The most common
comparison (n=7 trials) is between warfarin and aspirin (the
twomost commonly tested treatments), and the network includes
four comparisons of each of them against placebo, the third
most common comparator. Overall, 45 possible pairwise
comparisons can bemade between the nine treatments. Of these,
16 comparisons are informed directly by head to head evidence,
but six of the direct connections have only one trial. Thus several
of the comparisons that have not been directly studied are
informed by indirect evidence from only two trials. Nodes in a
network that are not well connected, such as indobufen and
ximelagatran in this example, should be interpreted with caution.
The diversity and strength of a network are determined by the
number of different interventions and comparisons of
interventions that are available, how represented they are in the
network, and howmuch evidence they carry. Severe imbalance
in terms of the amount of evidence for each intervention may
affect the power and reliability of the overall analysis,9 10 as
inferences may be driven largely from the evidence on one or
a few treatments and comparisons. The treatment network in
figure 1⇓ is a fairly diverse treatment network. Some
comparisons are informed by several randomized clinical trials
(both directly and indirectly), whereas other comparisons are
only sparsely informed (either by direct or indirect evidence).
Many pairwise meta-analyses are insufficiently powered,11 and
similar problems may extend to network analyses.10 Evidence
that is procured by small trials tends to be susceptible to greater
bias (for example, more prominent publication and selective
reporting biases),12 and small trials may spuriously show larger
treatment effects.13 Combination of such biased results may
yield unreliable estimates in a network. Because networks
include evidence from both direct and indirect comparisons,
power may be better than in simple pairwise meta-analyses that
include only direct evidence.10 However, the uncertainty of the
results in networks with limited evidence should not be
underestimated and may extend beyond what the results of any
traditional data synthesis might show.10

Peculiar co-occurrence patterns suggesting comparator
preference biases may also exist—for example, most new drugs
may be compared against an established inactive comparator
(placebo) or a straw man intervention (one that is known to be
a poor choice) rather than against the standard of care, or some
head to head comparisons may be avoided. For example, in
some fields (such as treatment of partial epilepsy with second
generation antiepileptic drugs8 or biologic drugs for rheumatoid
arthritis14) placebo controlled trials are almost exclusively
performed. This may result to some extent from guidance and
requirements by regulatory agencies or may represent the choice
of industry sponsors. However, sometimes, the lack of specific
direct head to head comparisons may simply be due to a lack
of attention to important comparisons that need to be looked at
in the future. For example, for most neglected tropical diseases,
few or no head to head comparisons have been done between
the two or three treatments that are recommended by guidelines
as main treatments.15 Trials in this field are rarely sponsored by
the industry. This lack of specific informative comparisons
cannot be documented robustly unless the whole network of
comparisons is visualized. Identification of missing evidence
on specific essential comparisons can guide the performance of
the most informative trials in the future research agenda.

Part 2: heterogeneity and incoherence
Network meta-analysis offers a unique opportunity to probe
whether homogeneity or heterogeneity exists in the results of
different trials in each of the pairwise comparisons that it
includes and whether coherence or incoherence is present in the
results of different trials that inform indirect comparisons versus
the respective available evidence from direct comparisons.
Figure 2⇓ summarizes the concepts of statistical and conceptual
heterogeneity and incoherence. Statistical and conceptual aspects
overlap but are not identical. Statistical heterogeneity is tested
by tests such as Cochran’s Q and quantified by metrics such as
I2.16 In the example of interventions for stroke prevention, none
of the pairwise comparisons has evidence of statistically
significant heterogeneity (P>0.10 for all on the Q test). However,
only three of the available pairwise comparisons were informed
by more than two trials, so very little power was available to
detect any potential heterogeneity statistically. Although not
statistically proven, heterogeneity can still be present and can
often be checked conceptually. Conceptual heterogeneity refers
to differences in methods, study design, study populations,
settings, definitions and measurements of outcome, follow-up,
co-interventions, or other features that make trials different. In
networkmeta-analysis, such differences are gauged in the same
way as they are in conventional pairwise meta-analysis.
However, in network meta-analysis one needs to keep in mind
that multiple comparisons are involved. For this reason,
conceptual heterogeneity should be assessed both within each
comparison and between all comparisons. In our example,
conceptual heterogeneity between trials is apparent as a varying
proportion of the included patient populations had a history of
stroke or transient ischemic attack (ranging from 0% to 100%),
despite the fact that all trials were designed to evaluate
comparative treatment effects in non-rheumatic atrial
fibrillation.7

Conceptual heterogeneity across comparisons can result in
discrepant results from direct evidence and indirect evidence.17
Such discrepancies are termed incoherence. Incoherence can
occur only when both direct and indirect evidence inform the
same comparison. For example, for a comparison between
treatments A and B, randomized clinical trials must have
compared A and B head to head and both interventions with
some common comparator, C. This is commonly referred to as
a closed loop. Incoherence can exist only in closed loops, and
the presence of incoherence can be assessed by comparing the
point estimates of the direct and indirect evidence informing
the same comparison. This can be done informally by gauging
the overlap of the uncertainty intervals accompanying the point
estimates, or it can be done formally by statistically testing
differences between the direct and indirect point estimate. In
the treatment network for stroke prevention interventions, one
nominal signal of incoherence was detected for one among the
10 treatment loops in the network—the treatment loop of
placebo, aspirin, and adjusted low dose warfarin. Here, the
indirect evidence suggested a large, clearly statistically
significant reduction in incidence rate ratio (per 1000 person
years) of atrial fibrillation events in favor of adjusted low dose
warfarin versus aspirin (0.23, 95% confidence interval 0.10 to
0.63), whereas the direct evidence suggested no effect (incidence
rate ratio of adjusted low dose warfarin versus aspirin 0.97, 0.47
to 1.94).
Considering the apparent conceptual heterogeneity in connection
with the limited power to detect statistical heterogeneity and
incoherence, results of the network meta-analysis should
therefore be interpreted with caution. At the same time, we
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should caution that statistical testing for both heterogeneity and
incoherence is subject not only to type II error (lack of power
to detect heterogeneity/incoherence, when evidence is sparse)
but also to type I error (false positive detection of
heterogeneity/incoherence, especially when many tests are
performed, as in a very complex network). This means that in
most network meta-analyses, finding no nominally significant
signals for incoherence does not fully exclude its presence, and
finding an occasional nominally significant signal of incoherence
may sometimes be a false positive. Neither statistical diagnostics
nor conceptual reasoning alone is perfect, but their careful
combined consideration may be optimal.18

When clear conceptual heterogeneity and incoherence are seen,
one has to consider whether synthesizing the results across trials
in a network meta-analysis is justifiable. When statistical
heterogeneity or incoherence is detected, one needs to think
carefully about whether clear conceptual explanations for it
exist or whether the signal is a chance finding. Furthermore, if
one cannot conceptually explain the detected statistical
heterogeneity, incoherence, or both, one has to decide whether
combining the data in the same network makes sense and
whether the results should be interpreted with extra caution.
Random effects meta-analysis models can accommodate
unexplained heterogeneity for the available pairwise
comparisons and often also make the incoherence signals less
prominent.
We should also acknowledge that we lack solid evidence on
whether the results of network meta-analyses with evidence of
heterogeneity and incoherence have less reliability, and thus
have poorer ability to predict the results of a future trial on a
comparison of interest. In the largest evaluation to examine the
coherence between direct and indirect evidence, Song et al
evaluated 112 independent trial networks (including 1552 trials
with 478 775 patients) that allowed a test for difference between
direct and indirect evidence.19 Incoherence was statistically
significant in 16 cases (14% of tests), yet the direction of
treatment effects only differed in two cases.

Part 3: data synthesis
Different models exist for synthesizing data in network
meta-analyses.20 The choice of model may affect the amount of
confidence one can statistically put in the point estimates
produced. The two most widely used models in network
meta-analysis (and conventional pairwise meta-analysis) are
the fixed effect model and the random effects model. The fixed
effect model assumes that no (or a negligible amount of)
heterogeneity exists. This assumption is recognized to be
typically unrealistic. When heterogeneity exists and the fixed
effect model is applied, uncertainty intervals (for example, 95%
credible intervals) become artificially narrow. For this reason,
the random effects model, which does assume and account for
unexplained heterogeneity, is typically preferred. Returning to
our stroke prevention example, some evidence of both statistical
and conceptual heterogeneity was identified. For this reason,
the random effects model seems the appropriate choice.
One of the most appealing but misunderstood elements of
network meta-analysis is the reporting of probabilities of which
treatment is the best, followed by next best, and so on. Various
methods of displaying probabilities are used.21A risk exists that
one may incorrectly emphasize the probabilities as being
clinically useful when the treatment effects are, in fact, not
different from the null beyond chance.4 Probabilities can be
fragile when the network is sparse. The ranking of treatments
may change drastically when a new trial is introduced into a

network. For that reason, authors should place less emphasis
on the probabilities of a network meta-analysis output and
greater emphasis on the treatment effects and their uncertainty.
Returning to our example from figure 1⇓, table 1⇓ shows the
rate ratio with credible intervals (that is, Bayesian confidence
intervals) of each treatment compared with placebo and the
associated probability that each treatment is best. Only for four
of the eight active treatments do we have sufficient confidence
that they are better than placebo. Nevertheless, when we
calculated the probabilities of being best, alternate day aspirin
was associated with the largest probability (66%) of being the
best treatment, even though it is one of the four treatments for
which we have no confidence that its effect is any better than
placebo. This discrepancy occurs because alternate day aspirin
yields the largest point estimate for treatment effect (compared
with placebo), and most of the probability mass for its treatment
effect is centered around small rate ratios.

Summary
Treatment networks and network meta-analysis of randomized
trials offer an exceptional opportunity to understand how much
evidence is available for each treatment and treatment
comparison, where and why more evidence is needed, where
and why heterogeneity and incoherence exist, and what the best
available treatments are, as well as the uncertainty surrounding
such assessments. As network meta-analyses become more
popular and influential, familiarity with these opportunities and
challenges will be necessary for providing transparent and
reliable evidence synthesis.
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Summary points

• Networks of randomized trials and network meta-analysis allow readers to visualize and interpret a wide picture of the evidence for
specific conditions and to understand the relative merits of multiple interventions

• The geometry of the network allows one to understand howmuch evidence exists for each treatment, whether some types of comparisons
have been avoided, and whether particular patterns exist in the choices of comparators

• Evaluating heterogeneity in the results of different trials in each of the pairwise comparisons and incoherence in comparisons of direct
versus indirect evidence is important

• Both conceptual and statistical heterogeneity and incoherence should be assessed
• Estimates of treatment effects from network meta-analyses should be interpreted with due attention to their uncertainty; although
appealing, plain treatment rankings or probabilities can be misleading
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Table

Table 1| Treatment effect estimates from example network

Probability of being best treatment (%)Treatment
Rate ratio

(95% credible interval)Network comparator treatments

0Placebo——

3Adjusted standard dose warfarin0.37 (0.26 to 0.53)Adjusted standard dose warfarin v placebo

16Adjusted low dose warfarin0.32 (0.18 to 0.56)Adjusted low dose warfarin v placebo

1Fixed low dose warfarin0.76 (0.30 to 1.76)Fixed low dose warfarin v placebo

0Aspirin0.62 (0.43 to 0.86)Aspirin v placebo

0Fixed low dose warfarin and aspirin0.98 (0.60 to 1.67)Fixed low dose warfarin and aspirin v placebo

11Ximelagatran0.35 (0.19 to 0.65)Ximelagatran v placebo

66Alternate day aspirin0.17 (0.01 to 1.15)Alternate day aspirin v placebo

5Indobufen0.46 (0.19 to 1.14)Indobufen v placebo
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Figures

Fig 1 Network geometry of well connected network of randomized controlled trials (RCTs) evaluating stroke prevention
among populations with atrial fibrillation. Circles represent the drug as a node in the network; lines represent direct
comparisons using RCTs; thickness of lines represents the number of RCTs included in each comparison, also represented
by the numbers

Fig 2 Common considerations of heterogeneity and inconsistency in a network
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