Investigating and managing pyrexia of unknown origin in adults

George M Varghese,1 Paul Trowbridge,2 Tom Doherty3

Few clinical problems generate such a wide differential diagnosis as pyrexia (fever) of unknown origin. The initial definition proposed by Petersdorf and Beeson in 1961,1 later revised, is “a fever of 38.3°C (101°F) or more lasting for at least three weeks for which no cause can be identified after three days of investigation in hospital or after three or more outpatient visits.”2–4 Essentially the term refers to a prolonged febrile illness without an obvious cause despite reasonable evaluation and diagnostic testing. A fever that is not self-limiting for which no cause can be found can become a source of frustration for both patient and doctor. There is little consensus on how such patients should be investigated, although recent prospective studies have evaluated diagnostic protocols to suggest approaches to investigation.5–9 We discuss evidence from epidemiological and diagnostic studies and suggest an approach to investigating and managing pyrexia of unknown origin.

Immunocompromised individuals, those with HIV infection, and patients admitted to hospital for other reasons with persistent or unexplained fever represent distinct subgroups in which the likely causes, diagnosis, and treatment of pyrexia usually differ from those in patients who are not immunocompromised. We do not discuss these subgroups in this review other than to provide definitions of pyrexia of unknown origin in different groups of patients (see box 1).

Box 1 | Classifications of pyrexia of unknown origin

| Classic pyrexia of unknown origin—Pyrexia for ≥3 weeks with no identified cause after evaluation in hospital for 3 days or ≥3 outpatient visits. |
| Nosocomial pyrexia of unknown origin—Pyrexia in patients hospitalised for ≥48 hours with no infection present or incubating at admission, and in whom the diagnosis remains uncertain after ≥3 days of appropriate evaluation, which includes microbiological cultures that have been incubating for ≥2 days. |
| Immunodeficient (neutropenic) pyrexia of unknown origin—Pyrexia in a patient with <500 neutrophils/µl in whom the diagnosis remains uncertain after ≥3 days of appropriate evaluation, which includes microbiological cultures that have been incubating for ≥2 days. |
| HIV-associated pyrexia of unknown origin—Pyrexia in a patient with confirmed HIV infection lasting for ≥4 weeks as an outpatient or ≥3 days as an inpatient, in whom the diagnosis remains uncertain after ≥3 days of appropriate evaluation, which includes microbiological cultures that have been incubating for ≥2 days. |

As classified by Durack and Street.6

How common is pyrexia of unknown origin?

The true incidence and prevalence of pyrexia of unknown origin are uncertain. A study of 153 patients reported the prevalence in hospitalised patients in the 1980s to be around 3%.5 However, in the past two decades technological advances in diagnosis, particularly sophisticated imaging and improved culture techniques, have reduced the proportion of cases where the cause is unknown.6

What causes pyrexia of unknown origin?

Pyrexia of unknown origin has a wide differential diagnosis. The most frequently encountered underlying causes of the pyrexia are listed in box 2. Broadly speaking, the three most common causes are infection, neoplasia, and connective tissue disease. Many prospective and retrospective studies have shown that pyrexia of unknown origin is more often caused by an atypical presentation of a common disease than by something exotic.5,6 Although causes of pyrexia of unknown origin vary substantially across geographical areas, a recent well conducted prospective cohort study and another retrospective evaluation from Europe reported the following proportions5,9—febrile illness 15–30%, neoplasia 10–30%, connective tissue disease 33–40%, miscellaneous (such as
drug fever, hyperthyroidism, and factitious fever) 5-14%, undiagnosed 20-30%.

Data from several large prospective studies suggest that infective causes are becoming less common, probably because advanced imaging techniques and improved culture methods have become more widely available. For similar reasons, the proportion of cases of pyrexia of unknown origin attributed to neoplasia has steadily decreased over recent years. These trends do not hold true in less developed societies where infection, often with mycobacteria, remains common and advanced diagnostic techniques are often unavailable.

Worth noting is that miscellaneous disorders are fairly common (see above).

How is pyrexia of unknown origin investigated?

Initial approach

Taking a thorough history and physical examination may often lead to a diagnosis. Repeating the history several times may elicit previously overlooked clues. Consider all symptoms as relevant since most patients with pyrexia of unknown origin present with a common disease that is atypically manifested. 1-5 Eliciting a history of comorbid conditions and previously treated diseases such as endocarditis, tuberculosis, rheumatic fever, and cancer may provide important diagnostic clues. A surgical history that provides information about the type of surgery performed, postoperative complications and any indwelling foreign material could also be relevant. Travel history is important because it may provide information about possible exposure to endemic diseases such as malaria, histoplasmosis, or other fungal infections.

Potentially important clues may be found in aspects of the history that are not routinely discussed with patients, such as the sexual history; asking about specifics of sexual practices such as anal penetration leading to rectal abscesses may point to a possible source of infection. Ask about social habits, such as drug use, exposure to animals or pets, specifics of the patient’s employment and hobbies. Enquire about unusual dietary habits, such as consumption of unpasteurised dairy products or rare meats. Check for any recent changes in medication that could have contributed to unexplained fever.

A full obstetric and gynaecological history in women may provide clues to the underlying condition; for example a history of multiple miscarriages may suggest a connective tissue disorder or pelvic pain may suggest tubo-ovarian pathology.

Documenting fever

A persistent fever needs to be accurately documented because the pattern of the fever and its relation with the pulse rate (particularly a temperature-pulse disparity) may point to an underlying cause. Accurate charting of the fever may require additional testing for atypical presentations and unexplained fever.

How is pyrexia of unknown origin investigated?

### Initial approach

**History**

Taking a thorough history and physical examination may often lead to a diagnosis. Repeating the history several times may elicit previously overlooked clues. Consider all symptoms as relevant since most patients with pyrexia of unknown origin present with a common disease that is atypically manifested. Eliciting a history of comorbid conditions and previously treated diseases such as endocarditis, tuberculosis, rheumatic fever, and cancer may provide important diagnostic clues. A surgical history that provides information about the type of surgery performed, postoperative complications and any indwelling foreign material could also be relevant. Travel history is important because it may provide information about possible exposure to endemic diseases such as malaria, histoplasmosis, or other fungal infections.

Potentially important clues may be found in aspects of the history that are not routinely discussed with patients, such as the sexual history; asking about specifics of sexual practices such as anal penetration leading to rectal abscesses may point to a possible source of infection. Ask about social habits, such as drug use, exposure to animals or pets, specifics of the patient’s employment and hobbies. Enquire about unusual dietary habits, such as consumption of unpasteurised dairy products or rare meats. Check for any recent changes in medication that could have contributed to unexplained fever.

A full obstetric and gynaecological history in women may provide clues to the underlying condition; for example a history of multiple miscarriages may suggest a connective tissue disorder or pelvic pain may suggest tubo-ovarian pathology.

### Documenting fever

A persistent fever needs to be accurately documented because the pattern of the fever and its relation with the pulse rate (particularly a temperature-pulse disparity) may point to an underlying cause. Accurate charting of the fever may require additional testing for atypical presentations and unexplained fever.

A full obstetric and gynaecological history in women may provide clues to the underlying condition; for example a history of multiple miscarriages may suggest a connective tissue disorder or pelvic pain may suggest tubo-ovarian pathology. A persistent fever needs to be accurately documented because the pattern of the fever and its relation with the pulse rate (particularly a temperature-pulse disparity) may point to an underlying cause. Accurate charting of the fever may require additional testing for atypical presentations and unexplained fever.

A full obstetric and gynaecological history in women may provide clues to the underlying condition; for example a history of multiple miscarriages may suggest a connective tissue disorder or pelvic pain may suggest tubo-ovarian pathology.

### Documenting fever

A persistent fever needs to be accurately documented because the pattern of the fever and its relation with the pulse rate (particularly a temperature-pulse disparity) may point to an underlying cause. Accurate charting of the fever may require additional testing for atypical presentations and unexplained fever.

A full obstetric and gynaecological history in women may provide clues to the underlying condition; for example a history of multiple miscarriages may suggest a connective tissue disorder or pelvic pain may suggest tubo-ovarian pathology.

### Documenting fever

A persistent fever needs to be accurately documented because the pattern of the fever and its relation with the pulse rate (particularly a temperature-pulse disparity) may point to an underlying cause. Accurate charting of the fever may require additional testing for atypical presentations and unexplained fever.

A full obstetric and gynaecological history in women may provide clues to the underlying condition; for example a history of multiple miscarriages may suggest a connective tissue disorder or pelvic pain may suggest tubo-ovarian pathology.

### Documenting fever

A persistent fever needs to be accurately documented because the pattern of the fever and its relation with the pulse rate (particularly a temperature-pulse disparity) may point to an underlying cause. Accurate charting of the fever may require additional testing for atypical presentations and unexplained fever.

A full obstetric and gynaecological history in women may provide clues to the underlying condition; for example a history of multiple miscarriages may suggest a connective tissue disorder or pelvic pain may suggest tubo-ovarian pathology.

### Documenting fever

A persistent fever needs to be accurately documented because the pattern of the fever and its relation with the pulse rate (particularly a temperature-pulse disparity) may point to an underlying cause. Accurate charting of the fever may require additional testing for atypical presentations and unexplained fever.

A full obstetric and gynaecological history in women may provide clues to the underlying condition; for example a history of multiple miscarriages may suggest a connective tissue disorder or pelvic pain may suggest tubo-ovarian pathology.

### Documenting fever

A persistent fever needs to be accurately documented because the pattern of the fever and its relation with the pulse rate (particularly a temperature-pulse disparity) may point to an underlying cause. Accurate charting of the fever may require additional testing for atypical presentations and unexplained fever.

A full obstetric and gynaecological history in women may provide clues to the underlying condition; for example a history of multiple miscarriages may suggest a connective tissue disorder or pelvic pain may suggest tubo-ovarian pathology.
Further investigations

Clues gleaned from the history, physical examination, and first round of diagnostic evaluations should be the basis for subsequent investigations that are tailored to the individual patient as shown in the diagnostic algorithm (fig 1). However, in the absence of potential clues, there are some data directing what further studies are of utility. Recent prospective studies have highlighted the usefulness of early use of FDG-PET ([18F] fluoro-2-deoxy-D-glucose positron emission tomography), which may be useful in helping to pinpoint a source of fever.10 11 12 Fluoro-2-deoxy-D-glucose is preferentially taken up by cells such as tumour and inflammatory cells, in which glucose metabolism is high. In a systematic review of eight prospective and retrospective studies including 302 patients, FDG-PET localised pathology directing further tests that led to diagnosis in over a third of patients.13 The diagnostic yield may be increased further by simultaneously using FDG-PET with conventional computed tomography (CT). Several small retrospective studies have shown sensitivities from 56% to 100%, specificities from 75% to 81%, and negative predictive values of 100%, when a combination of CT and FDG-PET scanning is used.14 21 Notably, FDG-PET was of no diagnostic benefit unless patients had an elevated erythrocyte sedimentation rate or raised concentrations of C-reactive protein.20

Nuclear scintigraphy, for example with 67Ga-citrate and 111In labelled leukocytes, is a much cheaper and more widely available imaging technique that may perform a similar role in localising pathology, though it is more time consuming and less sensitive and specific than FDG-PET. In a retrospective study evaluating the contribution of 67Ga scintigraphy in 145 cases of pyrexia of unknown origin in Belgium between 1980 and 1989, only 29% of the scans were considered helpful in diagnosis and 49% of the abnormal scans were considered noncontributory to the diagnosis.22 The limited specificity and the generally unfavourable characteristics of 67Ga scintigraphy makes it less attractive than FDG-PET. A recent retrospective study including 31 patients with pyrexia of unknown origin,13 in leucocyte scintigraphy was reported to be helpful in 19% of all cases.23 However, the probability of reaching a diagnosis was observed in 71% with a sensitivity of 75% and specificity 83%. Leucocyte scintigraphy may be helpful in diagnosing inflammatory and infectious conditions and rarely of use in neoplasm.

Several studies, including two large multicentre prospective analyses, have looked at the usefulness of other investigations in the absence of diagnostic clues. The evidence from these studies supported the use of chest CT and abdominal CT or ultrasound (if not already performed), looking specifically for: abscesses, lymph nodes, or splenomegaly; cryoglobulins (mixed cryoglobulinaemia was surprisingly common even in the absence of known risk factors); and temporal artery biopsy, particularly in patients older than 55.6 10 Although many previous studies supported temporal artery biopsy for patients older than 55 in the absence of clues indicating potential temporal arteritis, the authors thought this invasive procedure should be done later in the process of evaluation as temporal arteritis was a less prominent cause of pyrexia of unknown origin than previous studies had indicated.10

Evidence from one small but well done and recent retrospective analysis showed that bone marrow aspirate with trephine biopsy was diagnostic in nearly a fifth of patients and “helpful” for diagnosis in nearly a quarter. This was particularly, though not exclusively, true in the presence of thrombocytopenia or anaemia (haemoglobin <110 g/l). Bone marrow culture is thought to have a lower yield in immunocompetent individuals than in those who are immunocompromised, although this is probably less true in non-industrialised societies.24 Echocardiography is a non-invasive test that may be useful even in people with negative blood culture and without an audible heart murmur. Transoesophageal echocardiography (which has a diagnostic sensitivity of 95-100%, and a specificity of 98% for endocardial vegetations) is preferable to transthoracic echocardiography (sensitivity 63%, specificity 98%).25 Epstein-Barr virus, cytomegalovirus, toxoplasmosis, brucellosis, and coxiellosis are infections that can all present in a very non-specific way and rarely of use in neoplasm.

Algorithm for evaluation of fever of unknown origin
What is a reasonable approach to management of pyrexia of unknown origin?

Once a diagnosis has been established specific treatment can be started. For patients in whom a cause for the fever is not found and who are not clinically unwell, watching and waiting is reasonable. During this time of observation re-assess the history and physical examination, stepping back to re-evaluate the data, and consider new avenues to pursue. One large prospective study found an attributable mortality of only 3.2% at five years in people with pyrexia of unknown origin where a specific diagnosis could not be reached.26 The same study showed that most instances of pyrexia of unknown origin in which no diagnosis could be made resolved spontaneously, all of which suggests a good prognosis for people who remain without a diagnosis.26

In most cases where the individual is clinically stable experts consider empirical treatment to be unnecessary. Patients who are clinically unstable or neutropenic require prompt and appropriate antibiotic treatment. Empiric tuberculosis drugs may be considered where tuberculosis is prevalent and suspected but cannot be confirmed. Rifampicin may suppress fever even when not from an infectious cause. Empirical use of steroids is generally discouraged because it may mask symptoms and lead to delayed diagnosis of, for example, an underlying haematological malignancy. Several experts have recommended treatment with non-steroidal anti-inflammatory drugs for patients who have already had exhaustive investigations without finding an underlying cause. This treatment may be beneficial to patients in some situations, such as an underlying inflammatory condition. However, the theory that a patient’s response to such drugs allows the doctor to differentiate neoplastic from other causes of pyrexia of unknown origin has been refuted.27

When a diagnosis remains elusive, a second opinion from a colleague in another medical specialty such as rheumatology, haematology, oncology, or infectious disease may be helpful.

Contributors: GMV was responsible for the initial plan. GMV and PT were responsible for data collection, interpretation, and manuscript drafting. TD was responsible for manuscript editing. GMV is the guarantor for this paper and has full responsibility for this article.

Competing interests: All authors have completed the Unified Competing Interests form at www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and declare no support from any organisation for the submitted work: no financial relationships with any organisations that might have an interest in the submitted work in the previous 3 years; no other relationships or activities that could appear to have influenced the submitted work.

Provenance and peer review: Commissioned, externally peer reviewed.