Effectiveness of home based support for older people: systematic review and meta-analysis

Ruth Elkan, Denise Kendrick, Michael Dewey, Michael Hewitt, Jane Robinson, Mitch Blair, Deb Williams, Kathy Brummell

Abstract

Objective To evaluate the effectiveness of home visiting programmes that offer health promotion and preventive care to older people.

Design Systematic review and meta-analysis of 15 studies of home visiting.

Participants Older people living at home, including frail older people at risk of adverse outcomes.

Outcome measures Mortality, admission to hospital, admission to institutional care, functional status, health status.

Results Home visiting was associated with a significant reduction in mortality. The pooled odds ratio for eight studies that assessed mortality in members of the general elderly population was 0.76 (95% confidence interval 0.64 to 0.89). Five studies of home visiting to frail older people who were at risk of adverse outcomes also showed a significant reduction in mortality (0.72; 0.54 to 0.97). Home visiting was associated with a significant reduction in admissions to long term institutional care in members of the general elderly population (0.65; 0.46 to 0.91). For three studies of home visiting to frail, “at risk” older people, the pooled odds ratio was 0.55 (0.35 to 0.88). Meta-analysis of six studies of home visiting to members of the general elderly population showed no significant reduction in admissions to hospital (odds ratio 0.95; 0.80 to 1.09). Three studies showed no significant effect on health (standardised effect size 0.06; –0.07 to 0.18). Four studies showed no effect on activities of daily living (0.05; –0.07 to 0.17).

Conclusion Home visits to older people can reduce mortality and admission to long term institutional care.

Introduction

The objective of enabling older people to remain in their own homes has been a cornerstone of government policy for several decades. A recent royal commission on long term care has endorsed this objective, recommending that more emphasis be given to health promotion and other preventive measures as a means of delaying the onset of illness and dependency that eventually lead older people to need long term care.

One way of promoting health and delivering preventive care to older people is through regular home visiting. Several studies of home visits by teams based in general practices have shown promising results, with home visitors identifying a large number of previously unmet medical and social needs. Health visitors are well placed to promote the health of older people and to provide surveillance and support. Although British health visitors have historically provided services to mothers and young children rather than older people, the potential of the health visitor in meeting the needs of older people in the community has been widely recognised. Despite this, today’s generic health visitor devotes little time to older people.

Two previous systematic reviews examined the effectiveness of home visits to older people. In 1993, Stuck et al performed a meta-analysis of 28 controlled trials that evaluated the outcomes of comprehensive geriatric assessment. They found significant positive effects of home visiting on mortality, hospital admission and readmission, and nursing home placements. A second systematic review of 15 trials of preventive home visits to older people by van Haastregt et al (2000) found no consistent evidence that preventive home visits had a significant effect on any outcome.

In view of the shortcomings of previous reviews, and the lack of consistency between their findings, we thought it important to undertake a meta-analysis of all relevant studies available to date to clarify the benefits of preventive home visiting.

Method

As part of a larger systematic review to assess the effects of home visiting to all client groups, including parents and children, we reviewed studies on the effects of home visits to people aged 65 years and above.

Inclusion criteria

Papers were included in the review if they reported an empirical study, with a comparison group, evaluating a home visiting programme. We included randomised and non-randomised controlled trials. The home visitor had to undertake tasks within the scope of British health visitors—namely, surveillance, support, health promotion, and the prevention of ill health. The intervention had to involve the pursuit of a wide range of preventive outcomes rather than a single goal such as the prevention of falls or increased uptake of immunisation. We excluded studies in which the home visitor was a specialist in a branch of nursing other than health visiting (for example, community psychiatric or district nursing) and those in which the intervention was delivered solely by volunteers. We also excluded studies that involved only screening and referral, with no other input from the home visitor.

Results

Fifteen studies that met our inclusion criteria reported outcomes relating to older people; 13 were randomised controlled trials. The two others used a quasi-experimental design. The 15 studies were divided into two groups: one group of nine studies assessed members of the general elderly population and a second group of six studies assessed vulnerable

older people who were at risk of adverse outcomes. The second group consisted of four studies of older people recently discharged from hospital who were at risk of further admissions and two studies of frail older people who had been referred to home care agencies.

The aims and content of the studies are shown in Table 1. Details of the results of the studies are shown in Table 2.

Findings

Of eight trials that measured mortality in elderly people in general, three reported significant reductions. Meta-analysis of these eight trials gave a pooled odds ratio of 0.76 (95% confidence interval 0.64 to 0.89), indicating that home visiting was associated with reduced mortality. Five studies assessed mortality among frail older people who were at risk of adverse outcomes. The pooled odds ratio of four randomised trials was 0.72 (0.54 to 0.97), again indicating that home visiting had a significant effect (Fig 1).

Of six studies that measured admissions to hospital in the general elderly population, only one reported a significant reduction. The pooled odds ratio for all six studies was 0.95 (0.80 to 1.09), suggesting that home visiting did not have a significant effect (Fig 2). Three studies examined admission to hospital of frail elderly people who were considered “at risk.” Meta-analysis was not possible because insufficient information was provided. None found any significant effect. Five studies measured health status among the general elderly population, of which two reported improvements. Meta-analysis of the results of these three studies showed no significant effects (standardised effect size 0.06, –0.07 to 0.18). Among the studies that assessed the at risk population, the only study that measured health status reported no significant effect (Fig 3).

Seven studies measured functional ability in the general elderly population. None reported a significant improvement in activities of daily living or other similar measures of functional ability.

Table 1 Aims, outcome measures, and content of interventions of studies included in review of home based support for older people

<table>
<thead>
<tr>
<th>Study</th>
<th>Aims</th>
<th>Outcome measures</th>
<th>Content of intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hendriksen 1984<sup>w</sup> (Denmark)</td>
<td>To assess effects of preventive home visits</td>
<td>Admission to hospital; admission to nursing homes; contacts with GP; home nursing care; receipt of social services</td>
<td>Social support, coordinating community services, distributing aids and modifications</td>
</tr>
<tr>
<td>Pathy 1992<sup>o</sup> (England)</td>
<td>To monitor effects of surveillance and case finding</td>
<td>Mortality; admission to hospital; admission to nursing homes; health status; functional status; quality of life</td>
<td>Practical advice, health education, referral to appropriate services</td>
</tr>
<tr>
<td>Vetter 1984<sup>c</sup> (Wales)</td>
<td>To test effectiveness of health visitors’ visiting and monitor caseload</td>
<td>Mortality; health; wellbeing; functional status; access to other health and social services</td>
<td>Usual health visiting practice: health education, prevention, referral to other services</td>
</tr>
<tr>
<td>Hansen 1992<sup>d</sup> (Denmark)</td>
<td>To evaluate effects of home visiting</td>
<td>Mortality; readmission to hospital; admission to institutional care</td>
<td>Assessment, problem identification, referrals to GP if required. Follow up for medical and social problems, referral if required</td>
</tr>
<tr>
<td>Falbacher 1994<sup>e</sup> (USA)</td>
<td>To evaluate effectiveness of in-home geriatric assessments as means of providing preventive health care and improving health and functional status</td>
<td>Physical and mental health status; functional status; admission to hospital; admission to institutional care; immunisation</td>
<td>Screening for medical, functional, and psychosocial problems. Follow up letter (after initial visit from physician’s assistant or nurse) with recommendations</td>
</tr>
<tr>
<td>Hall 1992<sup>f</sup> (UK)</td>
<td>To assist older people to live longer at home</td>
<td>Mortality; admission to institutional care; psychological status</td>
<td>Developing personal health skills, goal setting, coordination of and referral to community services</td>
</tr>
<tr>
<td>Laker 1983<sup>g</sup> (UK)</td>
<td>To assess effects of focused health visitor intervention</td>
<td>Changes in problems (problems discussed under 10 headings: weight, mobility, dentition, sensory function, elimination, loneliness, performance of tasks, rest, medication, and miscellaneous)</td>
<td>Discussion of actual and potential health problems. Psychological support</td>
</tr>
<tr>
<td>McEwan 1990<sup>h</sup> (Britain)</td>
<td>To promote health, identify functional problems, prevent exacerbation of problems, and improve morale and wellbeing</td>
<td>Health status, self rated health; functional status; mortality; morale</td>
<td>Identification of problems, health promotion, advice, information, education, and referral</td>
</tr>
<tr>
<td>Van Rossum 1993<sup>i</sup> (Netherlands)</td>
<td>To assess effect of preventive home visits on health and use of services</td>
<td>Mortality; self rated health status; functional state; psychological state; wellbeing</td>
<td>Information, advice, social support</td>
</tr>
<tr>
<td>Stuck 1990<sup>j</sup> (USA)</td>
<td>To prevent disability</td>
<td>Functional status; hospital admission; admission to institutional care; use of community services; visits to physicians</td>
<td>Comprehensive assessment, health education, making recommendations, and monitoring compliance</td>
</tr>
<tr>
<td>Balaban 1988<sup>k</sup> (USA)</td>
<td>To improve function and wellbeing of patient and family</td>
<td>Health; morale and wellbeing; hospital admissions; functional status; client satisfaction</td>
<td>Assessment of medical and social needs, diagnostic and therapeutic care. Follow up after admission to hospital, referrals, education, and counselling</td>
</tr>
<tr>
<td>Williams 1992<sup<l</sup> (England)</td>
<td>To evaluate effects of home visiting after discharge from hospital</td>
<td>Health status; mortality; use of hospital services</td>
<td>Practical help, providing aids, dealing with problems, companionship</td>
</tr>
<tr>
<td>Dunn 1994<sup>m</sup> (England)</td>
<td>To reduce unplanned hospital re-admissions in patients recently discharged from geriatric wards</td>
<td>Mortality; admission to institutional care; unplanned hospital readmission</td>
<td>Stabilise patients, deal with any problems</td>
</tr>
<tr>
<td>Oktay 1990<sup>n</sup> (USA)</td>
<td>To evaluate a post-hospital support programme for frail elderly people and their caregivers</td>
<td>Caregiver stress; mortality; functional status; health service utilisation</td>
<td>Assessment, case management, service coordination, counselling, referrals, respite, education, medical back up</td>
</tr>
<tr>
<td>Archbold 1990<sup)o</sup> (USA)</td>
<td>To increase competence of family members providing care at home to frail older people</td>
<td>Caregiver role strain; caregiver rewards; use and cost of hospital services by older people</td>
<td>Increasing preparedness of caregiver, with emphasis on relationship between caregiver and care receiver</td>
</tr>
</tbody>
</table>
However, the only two studies that measured instrumental activities of daily living both reported significant improvements. Meta-analysis of four studies that measured activities of daily living showed no significant effect (standardised effect size 0.05, −0.07 to 0.17). Of two studies that assessed functional ability among older people considered to be “at risk,” neither reported significant improvements (fig 4). Only one of five studies that reported admission to residential nursing homes of members of the general elderly population found a significant reduction. However, meta-analysis of the results of four of these studies gave a pooled odds ratio of 0.65 (0.46 to 0.91), indicating that home visiting did have a significant effect in reducing admissions to institutional care.

Of four studies reporting admission to institutional care of older people considered to be “at risk,” two reported significant reductions. The pooled odds ratio for the three randomised trials entered into a meta-analysis was 0.55 (0.35 to 0.88), suggesting

Table 2 Outcomes of home visits to elderly people: mortality, admission to hospital, health, functional ability, and long term institutional care

<table>
<thead>
<tr>
<th>Study</th>
<th>Mortality</th>
<th>Hospital admission and hospital stay</th>
<th>Health status</th>
<th>Functional status</th>
<th>Admission to long term institutional care</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hendriksen 1984 (Denmark)</td>
<td>Intervention: 56/285; control: 75/287; P<0.05</td>
<td>No of admissions: intervention 219, control 271, P<0.05</td>
<td>NR</td>
<td>NR</td>
<td>Intervention 29/285, control 29/287, NS</td>
</tr>
<tr>
<td>Pathy 1992 (England)</td>
<td>Intervention: 67/369; control: 86/356; P<0.05</td>
<td>No of admissions: intervention 262; control 284, NS</td>
<td>Mean No days in hospital: intervention 12.5, control 14.6, NS</td>
<td>Health status: NS (no data given)</td>
<td>Functional ability: NS (no data given)</td>
</tr>
<tr>
<td>Vetter 1984 (Wales)</td>
<td>Intervention A: 45/281; control A: 49/273; NS</td>
<td>Intervention B: 35/296; control B: 60/298; P<0.01</td>
<td>NR</td>
<td>Disability (test for trend): intervention and control A, NS, intervention and control B, NS</td>
<td>NR</td>
</tr>
<tr>
<td>Hansen 1992 (Denmark)</td>
<td>Intervention: 32/163; control: 43/151; NS</td>
<td>No with one or more re-admissions: intervention 56/163, control 56/181, NS</td>
<td>NR</td>
<td>NR</td>
<td>Intervention 18/163, control 29/181, P<0.05</td>
</tr>
<tr>
<td>Fabacher 1994 (USA)</td>
<td>Intervention: 4/118; control: 4/123; NS</td>
<td>No admitted: intervention 22/100, control 21/95, NS</td>
<td>NR</td>
<td>Mean score ADL: intervention 5.8, control 5.8, NS</td>
<td>Mean score IADL: intervention 7.1, control 6.7, P<0.05</td>
</tr>
<tr>
<td>Hall 1992 (Canada)</td>
<td>Intervention: 14/81; control: 18/86; NS No of “survivors” (neither died nor admitted to institutional care): intervention: 60/81; control: 51/86; P=0.054</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>Intervention 6/81, control 17/86, P<0.05</td>
</tr>
<tr>
<td>Laker 1992 (UK)</td>
<td>NR</td>
<td>NR</td>
<td>Improvement in problems: 42% intervention 1, 48% intervention 2 Problem improvement score (intervention 1 vs control 1): 4.4, P<0.001</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>McEwan 1990 (Britain)</td>
<td>Intervention: 16/151; control: 23/145; NS</td>
<td>Physical health, percentage with problems: NS</td>
<td>ADL, % with problems NS</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>van Rossum 1993 (Netherlands)</td>
<td>Intervention: 42/292; control: 50/288; NS</td>
<td>No admitted to hospital: intervention 121/292, control 133/288, NS</td>
<td>Mean change in self rated health score: intervention −0.4, control −0.6, NS</td>
<td>ADL mean change in score: intervention 0.4, control 0.3, NS</td>
<td>Intervention 7/292, control 5/288, NS</td>
</tr>
<tr>
<td>Stuck 1995 (USA)</td>
<td>Intervention: 24/215; control: 26/199; P=0.80</td>
<td>No admitted to hospital: intervention 99/215, control 92/199, NS</td>
<td>NR</td>
<td>Mean score ADL: intervention 96.6, control 95.4, P=0.10 Mean score IADL: intervention 72.3, control 69.3, P=0.02</td>
<td>Intervention 9/215, control 20/199, P=0.02</td>
</tr>
<tr>
<td>Balaban 1988 (USA)</td>
<td>Intervention: 31/103; control: 20/95; P=0.20</td>
<td>Mean (SD) No of admissions: intervention 1.2 (1.2), control 0.6 (0.8), P<0.003 Mean (SD) No of days in hospital: intervention 6.2 (11.1), control 7.7 (21.7), NS</td>
<td>Health status (mean): intervention 5.7, control 6.0, P<0.05</td>
<td>ADL (mean score): intervention 87, control 90, P=0.20</td>
<td>NR</td>
</tr>
<tr>
<td>Williams 1992 (England)</td>
<td>Intervention: 30/231; control: 40/239; P=0.30</td>
<td>Mean physical status score at baseline (change over 12 months): intervention 5.7 (0.99), control 6.1 (0.09), NS</td>
<td>Mean disability score at baseline (change over 12 months): intervention 8.3 (2.1), control 7.8 (2.6), NS</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Dumm 1994 (England)</td>
<td>Intervention: 15/102; control: 25/102; P=0.10</td>
<td>Mean length unplanned readmissions (days): intervention 12.1, control 14.0, P=0.03</td>
<td>NR</td>
<td>NR</td>
<td>Intervention 8/102, control 7/102, NS</td>
</tr>
<tr>
<td>Skay 1990 (USA)</td>
<td>Intervention: 27/98; control: 30/93; NS</td>
<td>Mean No of admissions: intervention 0.78, control 0.66, NS</td>
<td>Mean No days in hospital: intervention 29.1, control 38.5, P<0.05</td>
<td>ADL: intervention −0.20, control −0.12, NS IADL: intervention 0.10, control −0.05, NS</td>
<td>Intervention 19/98, control 11/93, NS</td>
</tr>
<tr>
<td>Archbold 1995 (USA)</td>
<td>NR</td>
<td>No admitted: intervention 6/11, control 5/11</td>
<td>Mean No days’ stay: intervention 4.8, control 13.3 (no test results reported)</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

NR—not reported.

(IADL—instrumental) activities of daily living.

NS—no significant difference between groups; actual P value not reported in original paper.
that home visiting was successful in reducing admissions for at risk older people (fig 5).

Meta-regressions

Our meta-regressions showed that none of our three predictors (population type, duration of intervention, and age group) had any effect on mortality or admissions to institutional care. The analysis of hospital admissions was complicated by the small number of studies, the lack of any studies on elderly people who were considered to be at risk, and the fact that one study was of poor methodological quality. Balaban and colleagues conceded themselves that they had failed to control successfully for differences in health status between intervention and control participants at entry into the trial, resulting in a control group with better health than the intervention group. The lack of any significant effect in reducing admission to hospital may also have been the result of two opposing effects: on the one hand, home visiting may have resulted in increased admissions of older people whose need for hospital care might otherwise have been neglected; on the other hand, some admissions might have been averted through home visits.

Impact on health and functional status

The absence of evidence of improved health and functional status requires explanation. Undoubtedly one reason for the failure to find any significant differences between intervention and control groups was that those in poorest health had died, so that this outcome could be measured only on a subset of the original sample—namely, those who had survived. Another possible explanation is that where self rated measures have been used, the presence of the home visitor may have encouraged older people to express their problems more easily, thereby obscuring differences between intervention and control group. The tools used may not have been sensitive enough to detect modest improvements in health or functional ability. Also chronic and relatively intractable health and functional problems may require a greater, or different type of, input than that provided by the home visitors in the studies we reviewed.

Characteristics of home visiting programmes

Why some of the programmes were more successful than others in reducing mortality is puzzling, given that this was not the primary goal of any study. The three studies of members of the general elderly population that reported significant reductions in mortality did not share any characteristics that differentiated them from the other studies in this group. One feature is the breadth of response of the health visitor. In the inner city group in the study by Vetter et al and in the study by Hendriksen et al the...
health visitor referred to a wide range of outside agencies, whereas in the rural group in the study by Vetter et al and in other studies that showed no reduction in mortality there was a narrower focus on referral to a general practitioner.

It is difficult to know which components of the home visitors’ interventions made a difference to any of the outcomes assessed. As all the programmes were multifaceted, the independent effect of a particular component of care was difficult to assess. Moreover, in the papers we reviewed, descriptions of what the home visitor did were brief, giving little feel for the processes involved. Future studies would benefit from a greater focus on the process of delivering care and on attempting to identify which components of the intervention work.

Our finding from the meta-regression that the effect of home visiting did not depend on whether the intervention was targeted at elderly people who are at risk or whether it was delivered more widely is interesting. It suggests that the exclusion of people who are not at increased risk from such interventions may not, on the present evidence, be justified. Similarly, the finding that the effect of home visiting did not depend on the age of participants suggests that the exclusion of “younger” elderly people from such interventions may also be unjustified. However, more work is required to test our findings here, as the evidence from individual studies we reviewed suggests that those in poorer health may benefit more from the intervention and that interventions targeted more intensively on those identified as having problems are more effective. A recent study by Stuck et al, published after the end of our literature search, found that disability was reduced in older people at low risk at baseline but not in those at high risk. More work is clearly required to assess which populations benefit most from home visiting. Further work could also assess the optimal intensity of home visiting. As several studies did not report the intensity of visits, the importance of this factor was difficult to gauge.

Comparisons with other studies
Our findings are in marked contrast to those of van Haastregt et al, who, in the absence of a meta-analysis of the results of the trials they reviewed, failed to find evidence that home visiting resulted in any consistent positive outcomes. Though only four out of the 15 studies we reviewed found a significant effect on mortality, we have shown significant positive effects by combining data. Similarly, only three of the 15 studies showed a significant reduction in admissions to institutional care. Yet by pooling data from all the studies that assessed this outcome, we have shown significant positive effects. It seems that the decision of van Haastregt et al not to perform a meta-analysis might have led them to underestimate the effectiveness of preventive home visits to older people.

Clearly, all meta-analyses contain heterogeneity. However, unlike van Haastregt and colleagues, we did not consider that differences between the interventions meant their results could not be combined. By grouping our trials into two more homogeneous types of intervention (those aimed at the general elderly population and those aimed at frail older people who were at risk of adverse outcomes), we considered that meta-analysis was justified. While the number of trials in each meta-analysis was small, the results are encouraging, confirming the earlier promising findings of Stuck et al. On the basis of our own results, we cannot endorse the conclusion of van Haastregt et al that the evidence of effectiveness is so modest and inconsistent that home visits to older people should be discontinued. On the contrary, we believe that further trials to assess the effectiveness of home based support to older people may confirm our positive findings, and we look forward to the results of ongoing trials.

The views expressed in this paper do not necessarily reflect those of the NHS Executive.

Funding: NHS research and development health technology assessment programme.

Competing interests: JR has been reimbursed by the Community Practitioners and Health Visitors Association, the Royal College of Nursing, and the Royal College of Practitioners for attending conferences.

7 Sorensen KH, Svendsen J. Follow-up three years after intervention to relieve unmet medical and social needs of old people. Comp Gerontol (B) 1988;2:85-91.
This is the second of two reviews of trials of preventive home visits to elderly people published in the BMJ in the past 18 months. Elkan et al concluded that home visits reduce mortality and admissions to nursing homes, whereas last year’s review found no evidence of a benefit for elderly women living alone at home. Royal College of Nursing, 1982.

This is the second of two reviews of trials of preventive home visits to elderly people published in the BMJ in the past 18 months. Elkan et al concluded that home visits reduce mortality and admissions to nursing homes, whereas last year’s review found no evidence of a benefit for elderly women living alone at home. Royal College of Nursing, 1982.

This is the second of two reviews of trials of preventive home visits to elderly people published in the BMJ in the past 18 months. Elkan et al concluded that home visits reduce mortality and admissions to nursing homes, whereas last year’s review found no evidence of a benefit for elderly women living alone at home. Royal College of Nursing, 1982.

This is the second of two reviews of trials of preventive home visits to elderly people published in the BMJ in the past 18 months. Elkan et al concluded that home visits reduce mortality and admissions to nursing homes, whereas last year’s review found no evidence of a benefit for elderly women living alone at home. Royal College of Nursing, 1982.

This is the second of two reviews of trials of preventive home visits to elderly people published in the BMJ in the past 18 months. Elkan et al concluded that home visits reduce mortality and admissions to nursing homes, whereas last year’s review found no evidence of a benefit for elderly women living alone at home. Royal College of Nursing, 1982.

This is the second of two reviews of trials of preventive home visits to elderly people published in the BMJ in the past 18 months. Elkan et al concluded that home visits reduce mortality and admissions to nursing homes, whereas last year’s review found no evidence of a benefit for elderly women living alone at home. Royal College of Nursing, 1982.

This is the second of two reviews of trials of preventive home visits to elderly people published in the BMJ in the past 18 months. Elkan et al concluded that home visits reduce mortality and admissions to nursing homes, whereas last year’s review found no evidence of a benefit for elderly women living alone at home. Royal College of Nursing, 1982.

This is the second of two reviews of trials of preventive home visits to elderly people published in the BMJ in the past 18 months. Elkan et al concluded that home visits reduce mortality and admissions to nursing homes, whereas last year’s review found no evidence of a benefit for elderly women living alone at home. Royal College of Nursing, 1982.

This is the second of two reviews of trials of preventive home visits to elderly people published in the BMJ in the past 18 months. Elkan et al concluded that home visits reduce mortality and admissions to nursing homes, whereas last year’s review found no evidence of a benefit for elderly women living alone at home. Royal College of Nursing, 1982.
designated to examine effects in older people at low and high risk for admission to a nursing home. The analysis carried out by Elkan et al found no improvement in functional status, which is inconsistent with the rationale for home visits. How could mortality and admissions to a nursing home be reduced without an effect on functional status? Unfortunately, only four studies contributed to this analysis, confidence intervals were wide, and Elkan et al did not contact investigators to obtain additional data. Future reviewers should collaborate with original investigators to define the exact characteristics of interventions, obtain data on implementation and adherence, and standardise outcome measures and quality assessment. Several additional trials which have been published recently will increase the power of their analyses. The results are likely to generate useful hypotheses, which should be addressed in trials that are powered to examine effects across pre-specified interventions and subgroups of elderly people. Trials and meta-analyses show that preventive home visits can work. The challenge now is to tease out which components of the intervention are effective and which populations are most likely to benefit.

I am grateful to Andreas Stuck, John Beck, and Nicola Low for helpful comments.

Competing interests: None declared.

Attitudes and training of research fellows in surgery: national questionnaire survey

Choon S Seow, Nee B Teo, Christopher R Wilson, Karin A Oien

Traditionally, clinical research fellowships are occupied by junior trainees and are used as a stepping stone not only to an academic career but more commonly to the higher specialist training scheme. In the United Kingdom, clinical academic medicine is having difficulties in recruitment, especially to senior posts, and in academic surgery several professorial chairs remain vacant because of a shortage of suitable candidates.

Analysis of research papers presented at surgical meetings over the past 20 years has shown a considerable reduction in the number of randomised clinical trials and a corresponding increase in the number of basic scientific projects. Surgical research has recently been criticised for its poor quality and lack of evidence based “patient oriented research that matters.” Training in research methods is important for surgeons conducting research, and a previous survey showed that this view is shared by consultant surgeons. However, little is known about the surgical trainees in research fellowships or about their career aspirations.

The Calman report, Hospital Doctors: Training for the Future, recommended in 1993 that postgraduate trainee should be shorter and more structured, with research—and presumably research fellowships—being undertaken during the period of higher specialist training.

We examined the views of research fellows towards research and investigated whether the recommendations of the Calman report on research and surgical training had been adhered to.

Methods and results

In 1999, we asked all 53 professors of general surgery in the 24 academic departments of surgery in the United Kingdom for the names of their research fellows; 48 responded. An anonymous postal questionnaire survey was then sent to the 123 fellows identified; non-responders received a second distribution. The response rate was 74% (91/123). The table shows the training undertaken by surgical research fellows and their attitudes towards research.

In total, 64% (58/91; 95% confidence interval 53% to 74%) of the research fellows were experienced junior house officers before carrying out their research;