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Consistency of variety of machine learning and statistical models 
in predicting clinical risks of individual patients: longitudinal  
cohort study using cardiovascular disease as exemplar
Yan Li,1 Matthew Sperrin,1 Darren M Ashcroft,2,3 Tjeerd Pieter van Staa1,4,5

Abstract
Objective
To assess the consistency of machine learning and 
statistical techniques in predicting individual level 
and population level risks of cardiovascular disease 
and the effects of censoring on risk predictions.
Design
Longitudinal cohort study from 1 January 1998 to 31 
December 2018.
Setting and participants
3.6 million patients from the Clinical Practice 
Research Datalink registered at 391 general practices 
in England with linked hospital admission and 
mortality records.
Main outcome measures
Model performance including discrimination, 
calibration, and consistency of individual risk 
prediction for the same patients among models 
with comparable model performance. 19 different 
prediction techniques were applied, including 12 
families of machine learning models (grid searched 
for best models), three Cox proportional hazards 
models (local fitted, QRISK3, and Framingham), three 
parametric survival models, and one logistic model.
Results
The various models had similar population level 
performance (C statistics of about 0.87 and similar 
calibration). However, the predictions for individual 
risks of cardiovascular disease varied widely between 
and within different types of machine learning and 
statistical models, especially in patients with higher 
risks. A patient with a risk of 9.5-10.5% predicted 
by QRISK3 had a risk of 2.9-9.2% in a random forest 
and 2.4-7.2% in a neural network. The differences in 
predicted risks between QRISK3 and a neural network 
ranged between –23.2% and 0.1% (95% range). 

Models that ignored censoring (that is, assumed 
censored patients to be event free) substantially 
underestimated risk of cardiovascular disease. Of the 
223 815 patients with a cardiovascular disease risk 
above 7.5% with QRISK3, 57.8% would be reclassified 
below 7.5% when using another model.
Conclusions
A variety of models predicted risks for the same 
patients very differently despite similar model 
performances. The logistic models and commonly 
used machine learning models should not be directly 
applied to the prediction of long term risks without 
considering censoring. Survival models that consider 
censoring and that are explainable, such as QRISK3, 
are preferable. The level of consistency within and 
between models should be routinely assessed before 
they are used for clinical decision making.

Introduction
Risk prediction models are used routinely in healthcare 
practice to identify patients at high risk and make 
treatment decisions, so that appropriate healthcare 
resources can be allocated to those patients who most 
need care.1 These risk prediction models are usually 
built using statistical regression techniques. Examples 
include the Framingham risk score (developed from 
a US cohort with prospectively collected data)2 and 
QRISK3 (developed from a large UK cohort using 
retrospective electronic health records).3 Recently, 
machine learning models have gained considerable 
popularity. The English National Health Service has 
invested £250m ($323m; €275m) to further embed 
machine learning in healthcare.4 A recent viewpoint 
article suggested that machine learning technology 
is about to start a revolution with the potential to 
transform the whole healthcare system.5 Several 
studies suggested that machine learning models could 
outperform statistical models in terms of calibration 
and discrimination.6-9 However, another viewpoint 
concerns the fact that these approaches cannot 
provide explainable reasons behind their predictions, 
potentially leading to inappropriate actions,10 and 
a recent review found no evidence that machine 
learning models had better model performance than 
logistic models.11 However, interpretation of this 
review is difficult, as it included models from mostly 
small sample sizes and with different outcomes and 
predictors. Machine learning has established strengths 
in image recognition that could help in diagnosing 
diseases in healthcare,12-15 but censoring (patients lost 
to follow-up), which is common in risk prediction, does 
not exist in image recognition. Many commonly used 
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What is already known on this topic
Risk prediction models are widely used in clinical practice (such as QRISK or 
Framingham for cardiovascular disease)
Multiple techniques can be used for these predictions, and recent studies claim 
that machine learning models can outperform models such as QRISK

What this study adds
Nineteen different prediction techniques (including 12 machine learning models 
and seven statistical models) yielded similar population level performance
However, cardiovascular disease risk predictions for the same patients varied 
substantially between models
Models that ignored censoring (including commonly used machine learning 
models) yielded biased risk predictions

 on 19 A
pril 2024 by guest. P

rotected by copyright.
http://w

w
w

.bm
j.com

/
B

M
J: first published as 10.1136/bm

j.m
3919 on 4 N

ovem
ber 2020. D

ow
nloaded from

 

mailto:tjeerd.vanstaa@manchester.ac.uk
https://twitter.com/HeRC_Tweets
https://orcid.org/0000-0001-9363-742X
https://crossmark.crossref.org/dialog/?doi=10.1136/bmj.m3919&domain=pdf&date_stamp=2020-10-29
http://www.bmj.com/


Research

2� doi: 10.1136/bmj.m3919 | BMJ 2020;371:m3919 | the bmj

machine learning models do not take into account 
censoring by default.16

The objective of this study was to assess the 
robustness and consistency of a variety of machine 
learning and statistical models on individual risk 
prediction and the effects of censoring on risk 
predictions. We used cardiovascular disease as an 
exemplar. We defined robustness of individual risk 
prediction as the level of consistency in the prediction 
of risks for individual patients with models that have 
comparable population level performance metrics.17-19

Methods
Data source
We derived the study cohort from Clinical Practice 
Research Datalink (CPRD GOLD), which includes data 
from about 6.9% of the population in England.20 It also 
has been linked to Hospital Episode Statistics, Office 
for National Statistics mortality records, and Townsend 
deprivation scores,3 to provide additional information 
about hospital admissions (including date and 
discharge diagnoses) and cause specific mortality.20 
CPRD includes patients’ electronic health records from 
general practice, capturing detailed information such 
as demographics (age, sex, and ethnicity), symptoms, 
tests, diagnoses, prescribed treatments, health related 
behaviours, and referrals to secondary care.20 CPRD 
is a well established representative cohort of the UK 
population, and thousands of studies have used it,21 22 
including a validation of the QRISK2 model and an 
analysis of machine learning.8 23

Study population
This study used the same selection criteria for the study 
population, risk factors, and cardiovascular disease 
outcomes as were used for QRISK3.3 18 Follow-up of 
patients started at the date of the patient’s registration 
with the practice, their 25th birthday, or 1 January 
1998 (whichever was latest) and ended at the date of 
death, incident cardiovascular disease, date of leaving 
the practice, or last date of data collection (whichever 
was earliest). The index date for measurement of 
cardiovascular disease risk was randomly chosen 
from the follow-up period to capture time relevant 
practice variability with a better spread of calendar 
time and age.24 This was different from QRISK3, for 
which a single calendar time date was mostly used.18 
The main inclusion criteria were age between 25 and 
84 years, no history of cardiovascular disease, and 
no prescription for a statin before the index date. The 
outcome of interest was the 10 year risk of developing 
cardiovascular disease. The definition of the primary 
clinical outcome (cardiovascular disease) was the 
same as for QRISK3 (that is, coronary heart disease, 
ischaemic stroke, or transient ischaemic attack).3

We extracted two main cohorts from the study 
population—one overall cohort including all patients 
with at least one day of follow-up and one cohort 
with censored patients removed. The cohort without 
censoring excluded patients who were lost to follow-
up before developing cardiovascular disease by year 

10. The analysis of the cohort without censoring 
aimed to investigate the effects of ignoring censoring 
on patients’ individual risk predictions. This cohort 
mimics the methods used by some machine learning 
studies—that is, only patients or practices with full 10 
years’ follow-up were selected.8

Cardiovascular disease risk factors
The cardiovascular disease risk factors at the index 
date included sex; age; body mass index; smoking 
history; total cholesterol to high density lipoprotein 
cholesterol ratio; systolic blood pressure and its 
standard deviation; history of prescribing of atypical 
antipsychotic drugs; blood pressure treatment or 
regular oral glucocorticoids; clinical history of systemic 
lupus erythematosus, atrial fibrillation, chronic 
kidney disease (stage 3, 4, or 5), erectile dysfunction, 
migraine, rheumatoid arthritis, severe mental illness, 
or type 1 or 2 diabetes mellitus; family history of 
angina or heart attack in a first degree relative aged 
under 60 years; ethnicity; and Townsend deprivation 
score.3 The same predictors from QRISK33 were used 
for all model fitting except for Framingham,25 which 
used fewer and different predictors.

Machine learning and Cox models
The study considered 19 models, including 12 families 
of machine learning, three Cox proportional hazards 
models (local fitted, QRISK3, and Framingham), 
three parametric survival models (assuming Weibull, 
Gaussian, and logistic distribution), and a statistical 
logistic model (fitted in a statistical causal-inference 
framework). Machine learning models included 
logistic model (fitted in an automated machine 
learning framework),26 random forest,27 and neural 
network28 from R package “Caret” 29; logistic model, 
random forest, neural network, extra-tree model,30 
and gradient boosting classifier30 from Python package 
“Sklearn”31; and logistic model, random forest, neural 
network, and autoML32 from Python package “h2o.”33 
The package autoML selects a best model from a 
broader spectrum of candidate models.32 Details of 
these models are summarised in eTable 1. The study 
used the machine learning algorithms from different 
software packages, with a grid search process on hyper-
parameters and cross validation, to acquire a series 
of high performing machine learning models; this 
mimics the reality that practitioners may subjectively 
select different packages for model fitting and end 
up with a different best model. The study treated the 
models from the same machine learning algorithm but 
different software packages as different model families, 
as the settings (hyper-parameters) of these packages 
to control the model fitting are often different, which 
might result in a different best performing model 
through the grid search process.

Statistical analysis
We used the Markov chain Monte Carlo method with 
monotone style to impute missing values 10 times for 
ethnicity (54.3% missing in overall cohort), body mass 
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index (40.3%), Townsend score (0.1%), systolic blood 
pressure (26.9%), standard deviation of systolic blood 
pressure (53.9%), ratio of total cholesterol to high 
density lipoprotein cholesterol (65.0%), and smoking 
status (25.2%)18 (only these variables had missing 
values). We randomly split the overall cohort (which 
contained 10 imputations) into an overall derivation 
cohort (75%) and an overall testing cohort (25%). We 
grid searched a total of 1200 machine learning models 
with the highest discrimination (C statistic) on hyper-
parameters with twofold cross validation estimating 
calibration and discrimination. They were derived from 
12 model families of 100 samples with similar sample 
size to another machine learning study.8 We then 
estimated the individual cardiovascular disease risk 
predictions (averaged for missing value imputations) 
and model performance of all models by using the 
overall testing cohort. The sample splitting and model 
fitting process is shown in eFigure 1.

We compared distributions of risk predictions 
for the same individual among models. We plotted 
the differences of individual cardiovascular disease 
risk predictions between models against deciles of 
cardiovascular disease risk predictions for QRISK3. We 
produced Bland-Altman plots—a graphical method to 
compare two measurement techniques across the full 
spectrums of values.34 These plotted the differences 
of individual risk predictions between two models 
against the average individual risk prediction.34

We used R to fit the models from “Caret” and Python 
to fit models from “Sklearn” and “h2o.”29 30 We used 
SAS procedures to extract the raw data, create analysis 
datasets, and generate tables and graphs.35

Patient and public involvement
No patients were involved in setting the research 
question or the outcome measures, nor were they 
involved in developing plans or implementation 
of the study. No patients were asked to advise on 
interpretation or writing up of results.

Results
The overall study population included 3.66 million 
patients from 391 general practices. The cohort without 
censoring was considerably smaller (0.45 million) 
than the overall cohort. Table 1 shows the baseline 
characteristics of the two study populations, which 
were split into derivation and validation cohorts. The 
average age was higher in the cohort without censoring 
(owing to younger patients leaving the practice as 
shown in eFigure 11).

Table 2 shows the model performance of the machine 
learning and statistical models. All models had very 
similar discrimination (C statistics of about 0.87) and 
calibration (Brier scores of about 0.03 in eTables 2-4 
and eFigures 3-4).

Figure 1 shows the variability in individual risk 
predictions across the models for patients with 
predicted cardiovascular disease risks of 9.5-10.5% 
by QRISK3. Patients with a predicted cardiovascular 
disease risk between 9.5% and 10.5% with QRISK3 

had a risk of 2.2-5.8% with logistic Caret model, 2.9-
9.2% with Caret random forest, 2.4-7.2% with Caret 
neural network, and 3.1-9.3% with Sklearn random 
forest. The calibration plot (fig 2) shows that models 
that ignore censoring were miscalibrated (that is, 
predicted risks were lower than observed risks).

Figure 3 plots the differences of individual cardio
vascular disease risk predictions with the different 
models stratified by deciles of cardiovascular disease 
risk predictions of QRISK3. The largest range of 
inconsistencies in risk predictions was found in 
patients with highest predicted risks of cardiovascular 
disease. Low risk of cardiovascular disease was 
generally predicted consistently between and within 
models. We observed similar trends when using a 
different reference model (eFigure 5.2).

Figure 4 shows the Bland-Altman plot of QRISK3 
and neural network. We found a large inconsistency 
of risk predictions between models. The differences in 
predicted risks between QRISK3 and neural network 
ranged between −23.2% and 0.1% (95% range). 
The regression line shows similar finding to figure 
3, with the largest differences in higher risk groups. 
More comparison between specific models can be 
found in eFigure 6 and eFigure 7. We found similar 
inconsistency of risk prediction among models when 
using a logistic model as reference (eFigure 2.1). The 
removal of censored patients changed the magnitude 
but not the variability of individual cardiovascular 
disease risk predictions (eFigure 2.2).

We found substantial reclassification across a 
treatment threshold when using a different type 
of prediction model. Of 691 664 patients with a 
cardiovascular disease risk of 7.5% or lower, as 
predicted by QRISK3, 13.6% would be reclassified 
above 7.5% when using another model (table 3). Of 
the 223 815 patients with a cardiovascular disease risk 
above 7.5%, 57.8% would be reclassified below 7.5% 
when using another model. We also found high levels 
of reclassification with a different reference model (as 
shown in table 3) or a different threshold (eTable 7).

We did several sensitivity analyses with consistent 
findings of high levels of inconsistencies in individual 
risk predictions between and within models. The 
same machine learning algorithm with the selection 
of different settings (hyper-parameters) from different 
software packages yielded different individual cardio
vascular disease risk predictions (eTable 8 and eFigure 
8). The evaluation of the effects of generalisability by 
developing and testing models in different regions of 
England showed similarly high levels of inconsistencies 
in cardiovascular disease risk predictions (eTable 10 
and eFigure 9). Changing the number of predictors 
did not result in lower levels of inconsistencies in 
cardiovascular disease risk predictions with more 
predictors included in the models (eTable 11 and 
eFigure 10),

Discussion
We found that the predictions of cardiovascular 
disease risks for individual patients varied widely 
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between and within different types of machine 
learning and statistical models, especially in patients 
with higher risks (when using similar predictors). 
Logistic models and the machine learning models that 
ignored censoring substantially underestimated risk of 
cardiovascular disease.

Comparison with other studies
Despite claims that machine learning models can 
revolutionise risk prediction and potentially replace 
traditional statistical regression models in other 
areas,5 36 37 this study of prediction of cardiovascular 
disease risk found that they have similar model 
performance to traditional statistical methods and 
share similar uncertainty in individual risk predictions. 
Strengths of machine learning models may include their 
ability to automatically model non-linear associations 
and interactions between different risk factors.38 39 
They may also find new data patterns.30 They have the 
acknowledged strength of automating model building 
with a better performance in specific classification 
tasks (for example, image recognition).30 However, 
a critical question is whether risk prediction models 
provide accurate and consistent risk predictions for 

individual patients. Previous research has found that 
a traditional risk prediction model such as QRISK3 has 
considerable uncertainty on individual risk prediction, 
although it has very good model performance at the 
population level.18 19 This uncertainty is related to 
unmeasured heterogeneity between clinical sites and 
modelling choices such as the inclusion of secular 
trends.18 19 Our study found that machine learning 
models share this uncertainty, as models with 
comparable population level performance yielded very 
different individual risk predictions. Consequently, 
different treatment decisions could be made by 
arbitrarily selecting another modelling technique.

Censoring of patients is an unavoidable problem 
in prediction models for long term risks, as patients 
frequently move away or die. However, many popular 
machine learning models ignore censoring, as the 
default framework is the analysis of a binary outcome 
rather than time to event survival outcome. A UK 
Biobank study of risk prediction for cardiovascular 
disease did not report how censoring was dealt with,7 
like several other studies.39-41 Another machine 
learning study incorrectly excluded censored 
patients.8 Random survival forest is a machine 

Table 1 | Baseline characteristics of two study populations (patients aged 25-84 years without history of cardiovascular disease (CVD) or previous 
statin use). Values are numbers (percentages) unless stated otherwise

Characteristics

Overall cohort Cohort without censoring
Derivation cohort 
(n=2 746 453)

Validation cohort 
(n=915 479)

Derivation cohort 
(n=335 632)

Validation cohort 
(n=111 868)

CVD cases 86 769 (3.2) 28 828 (3.1) 78 826 (23.5) 26 168 (23.4)
Patients censored within 10 years 2 410 516 (87.8) 803 916 (87.8) NA NA
CVD risk factors
Female sex 1 406 796 (51.2) 469 098 (51.2) 173 691 (51.8) 58 169 (52.0)
Mean (SD) age, years 44.7 (15.6) 44.7 (15.7) 53.3 (16.2) 53.4 (16.2)
Mean (SD) body mass index 26.7 (5.0) 26.7 (5.0) 27.2 (4.8) 27.1 (4.8)
Mean (SD) total cholesterol/high density lipoprotein cholesterol ratio 3.9 (1.3) 3.9 (1.3) 4.1 (1.3) 4.1 (1.3)
Atypical antipsychotic drug 12 306 (0.4) 4030 (0.4) 932 (0.3) 316 (0.3)
Antihypertensive treatment 183 964 (6.7) 61 962 (6.8) 42 704 (12.7) 14 245 (12.7)
Regular steroid tablets 2059 (0.1) 694 (0.1) 289 (0.1) 100 (0.1)
History of systemic lupus erythematosus 1840 (0.1) 606 (0.1) 257 (0.1) 74 (0.1)
History of angina or heart attack in first degree relative <60 years 98 455 (3.6) 32 619 (3.6) 7950 (2.4) 2669 (2.4)
History of atrial fibrillation 20 778 (0.8) 6965 (0.8) 5213 (1.6) 1757 (1.6)
History of chronic kidney disease (stage 3, 4, or 5) 30 133 (1.1) 10 240 (1.1) 4364 (1.3) 1514 (1.4)
History of erectile dysfunction 39 651 (1.4) 13 110 (1.4) 3867 (1.2) 1287 (1.2)
History of migraines 177 439 (6.5) 59 106 (6.5) 19 629 (5.8) 6593 (5.9)
History of rheumatoid arthritis 16 167 (0.6) 5459 (0.6) 3043 (0.9) 1030 (0.9)
History of severe mental illness 219 861 (8.0) 72 832 (8.0) 32 190 (9.6) 10 673 (9.5)
History of type 1 diabetes 5899 (0.2) 2097 (0.2) 820 (0.2) 251 (0.2)
History of type 2 diabetes 35 569 (1.3) 11 826 (1.3) 8134 (2.4) 2641 (2.4)
Mean (SD) systolic blood pressure 126.9 (16.7) 126.9 (16.7) 133.1 (18.4) 133.1 (18.4)
Mean (SD) standard deviation of each individual patient’s systolic blood pressure 9.9 (5.6) 9.9 (5.6) 10.7 (5.9) 10.7 (5.9)
Ethnicity
Other ethnicity 173 271 (6.3) 58 124 (6.3) 6900 (2.1) 2273 (2.0)
White or not recorded 2 573 182 (93.7) 857 355 (93.7) 328 732 (97.9) 109 595 (98.0)
Smoking
Ex-smoker 629 500 (22.9) 209 186 (22.8) 76 060 (22.7) 25 429 (22.7)
Current smoker 806 978 (29.4) 269 717 (29.5) 94 082 (28.0) 31 335 (28.0)
Never smoker 1 309 975 (47.7) 436 576 (47.7) 165 490 (49.3) 55 104 (49.3)
Townsend deprivation
Score 1—Least deprived 600 392 (21.9) 199 937 (21.8) 86 596 (25.8) 29 156 (26.1)
Score 2 594 739 (21.7) 197 677 (21.6) 82 211 (24.5) 27 266 (24.4)
Score 3 572 903 (20.9) 191 045 (20.9) 69 897 (20.8) 23 326 (20.9)
Score 4 568 006 (20.7) 189 520 (20.7) 60 424 (18.0) 20 140 (18.0)
Score 5—Most deprived 410 413 (14.9) 137 300 (15.0) 36 504 (10.9) 11 980 (10.7)
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learning model that takes account of censoring.42 
Innovative techniques are being developed that 
incorporate statistical censoring approaches into the 
machine learning framework.16 43 However, to our 
knowledge no current software packages can handle 
large datasets for these methods. This study shows that 
directly applying popular machine learning models to 
data (especially for data with substantive censoring) 
without considering censoring will substantially 
bias risk predictions. The miscalibration was large 
compared with observed life table predictions. This 
is consistent with a recent study that reported loss of 

information due to lack of consideration of censoring 
with the random forest method.6

Models with similar C statistics gave varying 
estimates of individual risks for the same patients. A 
fundamental challenge with the C statistic is that it 
applies to the population level but not to individual 
patients.18 44 The C statistic measures the ability of a 
model to discriminate between cases and non-cases. It 
is a proportion of cases and non-cases that are correctly 
ranked by the model. This means that for a high C 
statistic, patients with observed events should have a 
higher risk than the patients without observed events.38 
The C statistic concerns rank of predicted probability 
rather than probability itself. For example, a model may 
predict all events with a range of probability between 
50.2% and 50.3% and non-events with a probability 
of 50%, which would result a perfect discrimination, 
but the predicted probability is not clinically useful. 
When a large number of patients have lower risks 
(which is often the case for cardiovascular disease risk 
prediction), the C statistic becomes less informative 
in indicating discrimination of models, especially in 
patients at high risk. For example, two patients with 
very low risk (say 1% and 1.5%) may have similar 
effects on C statistic to two patients with high risk (say 
10% and 20%), given that their differences in rank 
are the same (but the latter two are of greater clinical 
interest). Therefore, C statistics do not tell us whether 
a model discriminates specific patients at high risk 
correctly or consistently compared with other models. 
C statistics have also been shown to be insensitive to 
changes in the model.44 The evaluation of consistency 
in individual risk predictions between models may 
thus be important in assessing their clinical usefulness 
in identifying patients at high risk.

This study considered a total of 22 predictors that 
had been selected by the developers of QRISK on the 
basis of their likely causal effect on cardiovascular 

Predicted cardiovascular disease risk
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Fig 1 | Distribution of individual risk predictions with machine learning and statistical 
models in overall cohort for patients with predicted cardiovascular disease risks of 9.5-
10.5% in QRISK3

Table 2 | Performance indicators of machine learning and statistical models in overall cohort

Model Model performance*: C statistic (95% range†)
Average absolute change in 
model performance: % (95% range†)

Logistic (Caret) 0.879 (0.879 to 0.879) 0.00 (−0.03 to 0.04)
Random forest (Caret) 0.869 (0.867 to 0.869) −1.20 (−1.33 to −1.10%)
Neural network (Caret) 0.878 (0.867 to 0.880) −0.15 (−1.35 to 0.06)
Statistic logistic model 0.879 (0.879 to 0.879) 0.01 (−0.02 to 0.04)
QRISK3 0.879 Reference model
Framingham 0.865 −1.66 (−1.66 to −1.66)
Local Cox model 0.877 (0.877 to 0.878) −0.22 (−0.28 to −0.17)
Parametric survival model (Weibull) 0.877 (0.876 to 0.877) −0.29 (−0.35 to −0.24)
Parametric survival model (Gaussian) 0.876 (0.876 to 0.877) −0.33 (−0.39 to −0.29)
Parametric survival model (Logistic) 0.876 (0.875 to 0.876) −0.36 (−0.43 to −0.31)
Logistic (Sklearn) 0.879 (0.879 to 0.879) 0.00 (−0.05 to 0.03)
Random forest (Sklearn) 0.872 (0.871 to 0.873) −0.80 (−0.89 to −0.71)
Neural network (Sklearn) 0.872 (0.832 to 0.879) −0.85 (−5.39 to −0.03)
Gradient boosting classifier (Sklearn) 0.878 (0.877 to 0.878) −0.17 (−0.29 to −0.08)
extra-trees (Sklearn) 0.863 (0.861 to 0.864) −1.89 (−2.05 to −1.76)
Logistic (h2o) 0.879 (0.878 to 0.879) −0.06 (−0.10 to −0.02)
Random forest (h2o) 0.877 (0.877 to 0.878) −0.22 (−0.29 to −0.17)
Neural network (h2o) 0.875 (0.870 to 0.879) −0.45 (−1.09 to −0.04)
autoML (h2o) 0.879 (0.879 to 0.880) −0.00 (−0.07 to 0.06)
*Model performance was calculated in binary framework. Threshold 7.5% was used to calculate precision and recall for all models.
†95% range (2.5-97.5%) of model performance derived from 100 random samples.
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disease.3 Other machine learning studies have used 
considerably more predictors. As an example, a 
study using the UK Biobank included 473 predictors 
in the machine learning models.7 A potentially 
unresolved question in risk prediction is what type of 
variables and how many of them should be included 
in models, as consensus and guidelines for choosing 
variables for risk prediction model are lacking.45 More 
information incorporated into a model may increase 
the model performance of risk prediction at the 
population level. For example, the C statistic is related 
to both the effects of predictors and the variation of 
predictors among patients with and without events.46 
Including more predictors in a model may increase 
the C statistic merely because of greater variation 
of predictors. On the other hand, inclusion of non-

causal predictors may lower the accuracy of the risk 
prediction by adding noise, increasing the risk of over-
fitting, and leading to more data quality challenges.47 
Also, a very large number of predictors may limit the 
clinical utility of these machine learning models, 
as more predictors need to be measured before a 
prediction can be made. Further research is needed to 
establish whether the focus of risk prediction should 
be on consistently measured causal risk factors or 
on variables that may be recorded inconsistently 
between clinicians or electronic health records  
systems.

Guidelines for the development and validation 
of risk prediction models (called TRIPOD) focus on 
the assessment of population level performance 
but do not consider consistencies in individual risk 
predictions by prediction models with comparable 
population level performance.48 Arguably, the clinical 
utility of risk prediction models should be based, 
as has been done with blood pressure devices for 
instance, on the consistent risk prediction (reliability) 
for a particular patient rather than broad population 
level performance.49 If models with comparable 
performance provide different predictions for a 
patient with certain risk factors, an explanation for 
these discrepant predictions is needed.50 Explainable 
artificial intelligence has been described as methods 
and techniques in the application of artificial 
intelligence such that the results of the solution can be 
understood by human experts.51 This contrasts with 
the concept of the “black box” in machine learning, 
whereby predictions cannot be explained. Arguably, 
a survival model that is explainable (such as QRISK3, 
which is based on established causal predictors) 
may be preferable over black box models that are 
high dimensional (include many predictors) but that 
provide inconsistent results for individual patients. 
Better standards are needed on how to develop and test 
machine learning algorithms.14

Strengths and limitations of study
The major strength of this study was that a large 
number of different machine learning models with 
varying hyper-parameters using different packages 
from different programming languages were fitted to a 
large population based primary care cohort. However, 
the study has several limitations. We considered only 
predictors from QRISK3 in order to compare models 
on the basis of equal information, but sensitivity 
analyses showed similar findings of inconsistencies 
in cardiovascular disease risk prediction independent 
of the number of predictors. Furthermore, more hyper-
parameters in the machine learning models could have 
been considered in the grid search process. However, 
the fitted models already achieved reasonably high 
model performance, which indicates that the main 
hyper-parameters had been covered in the grid search 
process. Several machine learning algorithms were 
not included in this study, such as support vector 
machine or survival random forest, as the current 
software packages of these models cannot cope with 

Levels of QRISK3 predicted CVD risk
(shown by median value within groups stratified by deciles)
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large datasets.52-55 The Bland-Altman graph used the 
95% range of differences rather than 95% confidence 
interval, as the differences of predicted risk (including 
log transformed) did not follow normal distribution 
(which is a required assumption to calculate the Bland-
Altman 95% confidence interval). Another limitation 
is that this study concerned cardiovascular disease risk 
prediction in primary care, and findings may not be 
generalisable to other outcomes or settings. However, 
the robustness of individual risk predictions within 
and between models with comparable population level 
performance is rarely, if ever, evaluated. Our findings 
indicate the importance of assessing this.

Conclusions
A variety of models predicted cardiovascular disease 
risks for the same patients very differently despite 
similar model performances. Using the logistic model 
and commonly used machine learning models without 
considering censoring in survival analysis results in 
substantially biased risk prediction and has limited 
usefulness in the prediction of long term risks. The 
level of consistency within and between models 
should be assessed before they are used for clinical 
decision making and should be considered in TRIPOD 
guidelines.
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Table 3 | Reclassification of individual risk predictions with machine learning and statistical models

Model
Reclassification in overall testing cohort: No (%)*

Reclassified* Not reclassified
Overall cohort
QRISK3 10 year risk prediction (reference model):
  ≤7.5% threshold 94 186 (13.6) 597 478 (86.4)
  >7.5% threshold 129 348 (57.8) 94 467 (42.2)
Logistic model (Caret) 10 year risk prediction (reference model):
  ≤7.5% threshold 209 221 (25.9) 597 478 (74.1)
  >7.5% threshold 14 313 (13.2) 94 467 (86.8)
Cohort without censoring
QRISK3 10 year risk prediction (reference model):
  ≤7.5% threshold 34 607 (54.6) 28 779 (45.4)
  >7.5% threshold 1248 (2.6) 47 234 (97.4)
Logistic model (Caret) 10 year risk prediction (reference model):
  ≤7.5% threshold 6004 (17.3) 28 779 (82.7)
  >7.5% threshold 29 851 (38.7) 47 234 (61.3)
*Patients were reclassified if they had a risk prediction in any model that crossed the threshold compared with the prediction of the reference model.
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