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Logic in Medicine

Diagnostic logic

FERGUS J MACARTNEY

The history of diagnostic logic must be as old as that of medicine
itself; the motivation to improve it has probably never been stronger
than it was in the mind of the caveman patient as he felt the rasp of
the trepan drilling a hole in his skull. Was the hole there to let the
disease out or the cure in? Doctors have always been fascinated by
diagnosis and the means by which it can be reached, but until
recently the purpose ofstudying diagnostic logic has simply been to
improve thought processes. Today this remains the primary
objective, but a second motive becomes ever more important
namely, that ofcomputer modelling of the diagnostic process.

The principle of parsimony

Firstly, however, we have to consider how we may measure the
usefulness of a method of diagnosis. That it should be sufficiently
accurate goes almost without saying, but I would like to suggest that
brevity (or, to be more specific, parsimony) is the second most
important criterion by which a diagnostic process should be judged.

There is here a clear analogy with mathematical proofs. Two
methods may be used to prove the same theorem, but that which
always brings joy to the heart ofthe mathematician is the shorter and
neater. This can, of course, be overdone. The great Johann Karl
Friedrich Gauss, for example, when challenged as to how he had
arrived at the conclusion of one of his exquisitely brief theorems,
would reply loftily, "When a beautiful cathedral is built, who wants
to see the scaffolding?" His proofs were indeed so short that they
were often disbelieved. This did wonders for the curricula vitae of
the next generation of lesser mathematicians, who published
numerous lengthier proofs ofwhat Gauss had already shown.

Is diagnosis necessary?

If we pursue the virtue of parsimony sufficiently ruthlessly we
reach the interesting conclusion that under certain circumstances
diagnosis is a pointless or meaningless diversion in the therapeutic
process, which is, after all, the one that interests the patient. As a

first example, take the question of whether a patient who has acute
pain in the abdomen has appendicitis or Meckel's diverticulitis.
Provided that the affected structure is in its usual position the
precise diagnosis has no effect whatever on the management of the
patient. It is the decision to perform a laparotomy through an
incision in the right iliac fossa that matters.
As a second example, take the man aged 45 who has a blood

pressure of 130/87 mm Hg. The question "Does this patient have
hypertension?" is pointless, as it assumes that patients either have

or do not have hypertension, whereas all that they have is different
degrees of increased blood pressure. The key questions are not
diagnostic but prognostic-namely, is this patient at increased risk
ofdeath, stroke, or other complications, and ifso will the benefits of
antihypertensive treatment or the search for a directly treatable
cause, or both, outweigh the costs?

Finally, consider the value of psychiatric diagnosis, a subject on
which whole books have been written.' I recall as an undergraduate
being alternately fascinated and astonished by the teaching of
William Sargent. Into his outpatient department would come a man
enshrouded by an almost palpable aura of gloom; we would be told
rather unnecessarily that he was depressed. Next through the door
would come a woman who looked as if she had just won a

parliamentary election, even though she was anxious about the
possibility of there being a recount.

"Ah, another classical example ofdepression," would declare the
master. It took a brave student indeed to ask how two such different
people could possibly be suffering from the same disease.

"Simple, the lady has atypical depression," we would be told. I
have to confess that my nerve failed me at this point, and I dared ask
no more. Ultimately, the truth dawned. Patients who had classical
endogenous depression responded to drugs that were self evidently
antidepressant. If patients who had other symptoms responded to
antidepressant drugs then they must be depressed. Simple, really.
However illogical the argument, Sargent was trying to maintain that
what mattered was to recognise which patients would respond to
different forms of treatment, rather than to argue over the truth of
the diagnosis with which their problem was labelled.
Thus though I would agree with Wulff that "the clinician today

must recognise that the present disease taxonomy is arbitrary,
imperfect and everchanging,"2 I think that it is necessary to qualify
the second half of his sentence, which reads: "at the same time he
must realise that we cannot do without it." This may be true in
general, but it certainly is not true in particular. Furthermore, this
paradox arises precisely from the arguments that Wulff, Scadding,
and Campbell have put forward so well.24 Disease spotting is in
some respects like bird spotting, but while birds can exist in
isolation diseases cannot. To be sure, a tubercle bacillus can be
isolated from a patient who is sick with tuberculosis, and a

ventricular septal defect is a ventricular septal defect be it inside or

outside the body, but both ofthese are diagnosed in the first instance
because oftheir manifestations in sick patients. We may look on our
therapeutic objective as killing the tubercle bacillus or closing the
ventricular septal defect, but this has no value unless we make the
sick patient better. Furthermore, this disease centred approach
breaks down with something like rheumatoid arthritis, as it is at
present not possible to separate the disease from the patient. Our
only therapeutic objective is to make the sick patient better, so this
may or may not include "naming" the disease.

In a passage of great profundity, Campbell points out the
following: "A disease is first recognised syndromally-a con-
stellation of clinical features. The disease has a cause (infective,
nutritional, genetic, immunological, etc); this cause produces
characteristic structural changes, which in turn produce the clinical
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manifestations. The elucidation of the causative, structural and
functional changes may not come in any particular historical order,
but the paradigm has two characteristics: first, it is expected or at
least hoped the relations will be specific (unique cause, unique
structural and functional changes belonging to one syndrome);
second, as knowledge progresses, the defining process is 'pushed to
the left' in the sequence given above. In other words, a disease will
not be allowed to remain in syndromal terms if it can be explained or

defined in functional terms; a functional syndrome will not be left in
these terms if it can be characterised structurally, and 'cause' takes
priority overall."4

It follows that, though precise diagnosis may be unnecessary for
parsimonious treatment of the patient (as I have shown), it probably
remains essential for the "pushing to the left" process just
described. Furthermore, though it might be imagined that precise
diagnosis could be most easily dispensed with at the messy

syndromal stage, which is characterized by endless futile discussion
about what constitutes the syndrome (for example, depression),
diagnosis can in fact be conveniently forgotten even after consider-
able pushing to the left, as at the functional (for example, hyper-
tension) or even the structural stage (for example, appendicitis
versus Meckel's diverticulitis).

The diagnostic process

From this point on we shall assume that diagnosis is a desirable end.
Though many doctors love to imagine that diagnosis is some mystical
process beyond logical analysis (this makes of them an elite priesthood), the
fact is that hunch and intuition are unreachable, whereas logic can be taught.
Furthermore, computers are logical but totallyunimaginative.

THE BLUNDERBUSS APPROACH

The blunderbuss approach is the traditional method taught to medical
students. They take a detailed history, examine the patient from top to toe,
and then order every test that could conceivably have some bearing on the
problem. Not until all the information is to hand do they try and work out
what is the matter with the patient. This is done by fitting the pattern of
abnormalities found either to textbook descriptions of diseases or to their
own database of diseases in patients whom they have previously seen.

Computer applications
The nearest automated approach to the blunderbuss method is that of

database comparisons.5 An interactive search is made of a large database of
information on patients, looking for those who match the particular patient
under consideration. Usually a match is first sought on a limited list of
features, with the result that a rather large and inhomogeneous subset of
matching patients is obtained. The number of features to be matched is then
increased, and the subset usually becomes smaller. When a matching subset
is obtained in which the disease diagnosed in all patients is the same the new
patient is assumed to have the same disease and can then be added to the
database.

This method requires the accumulation of a large database free from
errors, which is very expensive, yet there is no real concept within it of a list
of possible diagnoses, each having a different probability of being true.

Probably the most suitable application is inthe diagnosis of rare syndromes,'
where there is a real problem of human memory and collation of small
snippets of information from diverse sources. Cases can be added from
reports in journals as well as from the experience of collaborating centres,

thus pooling information that could never effectively be accommodated in
the memory of a single clinician.

Overall assessment

This clinical approach is woefully unimaginative, cumbersome, and
extravagant (as opposed to parsimonious). When applied to laboratory tests
it wastes money, not only because many of the tests originally ordered are

unnecessary but also because the more tests that are ordered the more likely
it is that, by chance, one or more will turn out to be "abnormal" and start a
wild goose chase of further tests to investigate the chance abnormality.

If this method is so bad why does it continue to be taught? Why are
students not encouraged to use searchlights rather than buckets, to borrow a
phrase from Popper? Part of the reason is that a searchlight cannot be used
effectively without a fairly thorough knowledge of the territory to be
searched. Students need to familiarise themselves with the normal as well as
the abnormal. It is good practice for them to examine the whole patient every
time. A thorough history taking and physical examination is also a cheap
screening test for unsuspected disease not associated with the particular
problem that has brought the patient to the doctor.
A further reason for the blunderbuss method continuing to be taught is

that should an unfortunate doctor ever appear before a court he is far more
likely to be criticised for sins of omission than sins of commission. Until
lawyers learn the virtue of parsimony and understand that medical decisions
are made on the basis of uncertainty, not matters "beyond reasonable
doubt," medical education will continue to be blighted accordingly.

ALGORITHMIC DIAGNOSIS

Algorithmic diagnosis will not be described in detail, as the BMJ has
recently published series of clinical algorithms. These consist of a series of
questions linked by lines labelled with the answers, which lead either to the
next question, or, less often, to the diagnosis.7 There is one entry point to the
algorithm, and if the questions are followed through a diagnosis will be
reached. The same diagnosis may be reached by several different routes.
The idea of clinical algorithms comes, ironically, from a rather unfashion-

able method of computer programming known as flow chart construction.
Flow charts were devised to mimic the Boolean logic that is "built in" to
digital computers and consists in essence of manipulating the logical
operators and, or, and not inif statements (for example, if it is snowing and
the fountains are turned off in Trafalgar Square then it is New Year's Eve).

Computer applications
Algorithmic approaches to diagnosis are exemplified by programs for

evaluating acid-base disorders8 and comatose patients.9 If an algorithm is
sufficiently simple there is no point in computerising it; it is quicker and
simpler to follow a printed version of the original algorithm.
As will be discussed, algorithms are often rather gross oversimplifications

of the diagnostic process. This has led to a broadening out of the concept into
production rule systems by experts in artificial intelligence.'011 The
comparison of databases and statistical systems requires a database of
patients that is expensive and time consuming to obtain. By contrast,
production rule systems require a database of knowledge consisting of
production rules that are Boolean statements of the kind already described.
The attraction of this approach to systems analysts is immediately obvious.
Instead of spending years accumulating boring data on patients they can
spendanafternoon with medical experts, picking theirbrains until they have
translated their expertise into a series of production rules. The result has
been diagnostic programs such as those for glaucoma (Casnet/glaucoma)'2
and neurological localisation in unconscious patients.'3

Overall assessment
The great advantage of clinical algorithms is their predictability. If the

same set of information is fed into them the same answer will always emerge.
The problem is that real life is seldom that simple. For this reason I believe
that algorithms are best devised by experts for the use of non-experts. One of
the most difficult judgments that an expert has to make is how seriously to
take the information and conclusions given by anunfamiliar non-expert who
consults her about a patient. If the non-expert has used an algorithm with
which the expert is familiar, and that algorithm is based on observations that
are reproducible even in the hands of non-experts, then the expert is much
better to evaluate the information. She may know, for example, that the
diagnosis given by the algorithm is not certain, but at least she should be
able to judge how uncertain it is.
The Boolean example of New Year's Eve given above shows one of the

most seriousdifficulties of the production rule approach. It is not quite
certain that it is New Year's Eve just because it is snowing and the fountains
are turned off. Thus some measure of uncertainty is required that is
propagated fromone rule to another. Attempts to do this so far' 14 seem to be
naive to statisticians,' who after all are old hands at quantifying uncertainty.
Other serious problems with this approach are the difficulties of encompass-
ing medical knowledge in production rules' and of being sure that these
production rules are being applied in appropriate circumstances.'4
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THE HYPOTHETICODEDUCTIVE MODEL

The two models just discussed were almost diametrically opposite, but
both were unsatisfactory. The key elements in the hypotheticodeductive
model are the generation and testing of hypotheses, which together form a
well recognised pattern of adult thinking. 16 The importance of this model in
diagnosis was probably first put forward by Campbell.'718 It is attractive
precisely because it allows for hunch and intuition in the diagnostic process,
as these may be the source of hypotheses generated. None of the other
models discussed here do this. Equally, this is the only model that cannot be
programmed into a computer without sacrificing one of its most important
characteristics. Campbell4 asserts emphatically that his understanding of
diagnosis springs from a Popperian view of scientific discovery,'9 but it is
important to realise that there are some aspects in which the hypothetico-
deductive model departs substantially from the Popperian approach.
Although there is almost complete agreement on the importance of the
generation ofhypotheses and the sources of hypotheses, the Popperian view
ofhow hypotheses should be tested is far too narrow for diagnostic purposes.
These two opposing points will now be expanded.

Generation ofhypotheses
The classical inductive view of science has no room for imagination but

regards the foundation of scientific knowledge as consisting of particular
observations (including experiments) from which general laws of the
universe can be induced. The Popperian view is attractive in that it does not
accept that scientists are passive observers but rather sees them as actively
generating hypotheses to be tested, very often using their imaginations to do
so. The generation of hypotheses is clearly identifiable in the behavioural
analyses of clinicians at work20 21 and begins remarkably early, often as soon
as the clinician is aware ofthe complaint, age, and sex of the patient. To give
a well known example, the clinician seeing a fat fertile woman aged 40
immediately hypothesises that she has gall stones.
Once this rather romantic Popperian view of science is grasped it becomes

easier to understand the subtlety ofa celebrated quotation by Medawar: "In
commencement addresses and other uplifting declarations, clinicians who
discourse on the 'spirit ofmedicine' will always point out that, while there is
a large and profoundly important scientific element in the practice of
medicine, there is also an indefinable artistry, an imaginative insight, and
medicine (they will tell us) is born ofa marriage between the two. But then (it
seems to me) the speaker spoils everything by getting the bride and groom
confused. It is the unbiased observation, the apparatus, the ritual of fact
finding and the inductive mumbojumbo that the clinician thinks of as
'scientific', and the other element, intuitive and logically unscripted, which
he thinks of as a creative art."22

Testing hypotheses
Testing hypotheses forms an important part ofboth the classical inductive

and the Popperian deductive approaches to the foundations of scientific
knowledge. While the inductive approach regards testing hypotheses as
including both verification and falsification of the hypothesis, however,
Popper insists that only falsification increases knowledge. '9 The reason for
this is that if verification is held to validate a hypothesis the assumption is
that whatever experiment is being used to verify the hypothesis it will always
give the same result, however often it is repeated. This is a matter of faith in
the orderliness of creation, not of objectively demonstrable fact. Either you
accept that it is a matter offaith or you conclude that the only acceptable way
of testing a hypothesis is to prove it to be false. This is not as nihilistic as it
first sounds, because scientific knowledge is advanced if an alternative
hypothesis is put forward that contains more information and yet explains all
the observations made so far. This new hypothesis is better because it
contains more information, but it is not "the truth" because it survives only
until it too is disproved.

It is clear from the observational studies already quoted that in clinical
diagnosis the evaluation of hypotheses consists of both verification
and falsification.2' Indeed, were clinicians to insist on falsifying every
hypothesized diagnosis save one an enormous amount of time would be
wasted, and the principle ofparsimony already alluded to would be violated.
Are clinicians therefore anti-Popperian? Not necessarily. It is just that when
we seek to diagnose the problem in a patient we are not in the business of
establishing the foundations of scientific knowledge. To do that we require
certainty (that a hypothesis is false, according to Popper). From a practical
point of view, to diagnose the problem we do not have to be certain that the
diagnosis is correct. All we need to know is that ifwe manage the patient on
the assumption that this diagnosis is correct the patient will do better than if
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any other diagnosis is assumed. This point is foundational. Failure to
understand it lies behind much muddled thinking on diagnosis.
We shall return in due course to the question ofhow we may be sure that a

diagnosis is sufficiently accurate, but to avoid confusion it should be
emphasised that what has just been written refers to the optimal management
of an individual patient. Other considerations enter once we have other
objectives, such as generalizations based on populations that have a
particular disease. It has already been shown that diagnostic differentiation
between appendicitis and Meckel's diverticulitis is not necessary for
appropriate management of the patient with acute abdomen. To make
generalizations about Meckel's diverticulitis, however, it is important that
the diagnosis should be established as stringently as possible. Indeed, it can
be argued that the less well defined a disease is the more important it is
to make an accurate diagnosis.' The recognition by psychiatrists of the
unreliability of psychiatric diagnosis led some to argue that psychiatric
diagnosis should be abandoned.23 But if this is done all hope for advancing
knowledge of psychiatric illness disappears, as there is no means by which
the foundation of diagnosis can be pushed to the left-that is, from the
syndromic to the functional, anatomical, and causal. What is required is
more reliable methods of diagnosis, not abandonment of the concept.

Sources ofhypotheses
Much has been made so far of the place of imagination in generating

hypotheses. In reality, most hypotheses arise from more prosaic sources,
which have been well described by Cutler.24 These include recognising
patterns of varying degrees of complexity. There are trilogies (weight loss,
exophthalmos, and tachycardia suggest thyrotoxicosis), tetralogies (squatt-
ing, hypoxic spells, cyanosis, and right ventricular hypertrophy suggest
Fallot's tetralogy), and more complicated combinations of signs. These are
rather amenable to computer based diagnosis, in contrast to what might be
termed monologies, where the problem is diagnosed as the patient walks
into the room. The facial appearances of patients who have Down's
syndrome and idiopathic hypercalcaemia syndrome are so characteristic to
an experienced clinician that it is doubtful whether either should be referred
to as a syndrome. Certainly the term Down's syndrome should be dropped
once the chromosomes have been examined, for this allows anatomical
diagnosis.

Number ofhypotheses
There seems to be good evidence that the limited short term memory of

the clinician means that the number of hypotheses entertained at any one
time is restricted to four ± one.25 Thus rejection ofhypotheses is helpful not
only in its own right but as a means ofconserving short term memory. Once
the hypothesis has been rejected it may be forgotten.

Computer modelling
The hypotheticodeductive model forms the basis of what are termed

cognitive programs.26 The complexity of the approach is well illustrated by
Pauker et al.27 The clearest analogue to recognising sets (for example,
tetralogies) is probably in the set covering model,2a which is also capable of
handling the difficult problem ofmultiple simultaneous disorders. The most
ambitious of these programs is probably Internist,9 which has developed
into Caduceus3" and covers 500 general medical diseases and over 3500
"manifestations."

Overall assessment

Although there is much that is attractive in the hypotheticodeductive
model, it has important drawbacks. Firstly, there is no real concept of the
cost of evaluating hypotheses. In fact, much time and money is wasted on
doing laboratory tests to rule out diagnoses that are extremely unlikely
anyway or to confirm diagnoses that are already as certain as they need to be.
This probably explains why the model fits history taking much more
effectively than physicalexamination or laboratoryinvestigation. Questions
cost nothing.

Secondly, there isnoadequate explanation ofthe valueofnew information;
as we shall see, this is much more subtle a matter than simply confirming or
refuting hypotheses.

Thirdly, from the point ofview ofcomputer modelling (and this applies to
expert systems in general) the question has to be asked whether the objective
should be to mimic clinicians or to use computers to do the things that
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clinicians cannot do in their heads (such as multivariate analysis). I
understand the motivation of those working with computers who wish to
mimic the brain, but I as a doctor want a system that will do better than the
best clinician. A machine that simply does what a clinician (even a superb
clinician) does is simply not a very attractive proposition.

Finally, the argument that "this is what good clinicians do; therefore it is
the best model available" may not be sound. Perhaps what good clinicians do
reflects how they were trained in diagnosis and they would do better if
trained differently.

Bayesian probability revision

Diagnostic logic owes more than most doctors probably imagine to the
work ofan eighteenth century English clergyman, Thomas Bayes. When not
on his pastoral duties, Bayes indulged in his hobby, mathematics; would that
more clinicians were as versatile. It is impossible to discuss Bayes's theorem
without introducing mathematics, but to reduce the shock I shall first give an
example of diagnostic logic as it applies to my own subject, paediatric
cardiology, and then show that the approach is analogous to successive
applications ofBayes's theorem. This approach to diagnostic logic was learnt
by myself and many others at the feet of that gifted teacher of adult
cardiology, David Mendel, long before I (and probably he) knew anything
about Bayes or his theorem. Similarly, I have taught this method to a
generation of housemen and registrars without reference to Bayes except
where some aptitude to mathematics is evident.

LEAGUE TABLE DIAGNOSIS

Phase I-A child is referred to me as an outpatient. Intomy mind comes a
league table of ranked probabilities, starting with the highest. Top of the
league is innocent systolic murmur, followed in order by venous hum,
bicuspid aortic valve, ventricular septal defect, atrial septal defect, and
patent ductus arteriosus. The ranking comes from their incidence in the
population referred to me. Below patent ductus is an extremely long list, the
details ofwhich do not matter.
Phase 2-The mother brings the child in, and I observe that the child is a

baby of 3 months old. This immediately knocks innocent systolic murmur,
venous hum, bicuspid aortic valve, and atrial septal defect out ofmy top six.
Ventricular septal defect and patent ductus arteriosus remain in the same
order. Considerably less likely are tetralogy of Fallot and pulmonary valve
stenosis, in that order, followed by everything else.
Phase 3-I introduce myself to the mother and ask her to remove all

clothes from the baby except the nappy and its cover. While she is doing this
I ask her a few routine questions about pregnancy and family history. These
are of considerably more value in making her feel at home than making a
diagnosis. To be honest, the only question worth asking from a diagnostic
point ofview is whether the child has had any cyanotic spells. Ifthe answer to
this were yes Fallot's tetralogy would go to the top of the list. The answer is
no. When the baby is undressed he turns out to look entirely healthy and
acyanotic without breathing difficulty. This hardly affects the likelihood of
ventricular septal defect, as the baby is as likely to appear normal with a
ventricular septal defect as without. Patent ductus arteriosus becomes
slightly less likely, but pulmonary valve stenosis overtakes tetralogy because
most patients at this age who have tetralogy will be cyanosed while most who
have pulmonary valve stenosis will not.

Phase 4-I feel the pulses. They are normal. If coarctation had been
anywhere near the top of the table it would have dropped far down. As it is,
patent ductus arteriosus drops to fourth place, as even fairly small ducts are
associated with jerky pulses.
Phase S-As this is a young baby I omit observing the jugular venous

pulse for the time being and palpate the heart. There is a systolic thrill
maximal in the third left intercostal space. This makes patent ductus
arteriosus more unlikely still but moves ventricular septal defect a little
further ahead of the rest.
Phase 6-I auscultate. There are no diastolic murmurs. The systolic

murmur is of ejection type. There is an expiratory ejection click at the lower
left sternal border, and pulmonary closure is delayed and quiet. Pulmonary
valve stenosis moves to the top ofthe table, and everything else moves out of
sight.
Note that the diagnosis has been achieved with parsimony yet without

generating or testing a single hypothesis. The limitations of short term
memory are dealt with by considering in detail only the top of the league
table. A cross sectional echocardiogram is now ordered with a request for
Doppler interrogation ofthe jet through the pulmonary valve to estimate the
severity of the pulmonary stenosis. If the estimated gradient is less than 30
mm Hg we will simply follow up the patient. If it is above 30 mm Hg and
there is no associated atrial septal defect the child will go for cardiac

catheterisation and balloon valvuloplasty. If there is an atrial septal defect
then the child will be referred for surgery without cardiac catheterisation.
Thus the purpose of cross sectional echocardiography is primarily to help
decision making. A secondary objective is to test the hypothesis that the
patient has pulmonary valve stenosis without appreciable associated lesions.
The example given is typical of children of this age except that neither a

chest x ray nor an electrocardiogram was required. If they had been
performed they would simply have been regarded as phases 7 and 8, each
requiring reassessment of the league table of probabilities.

BAYESIAN DIAGNOSIS

The diagnostic process will now be followed through mathematically. Let
DI, D2 . . . D. represent all n possible mutually exclusive diagnoses present.
Then P(DI), P(D2) . . . P(D.) are the probabilities ofdiagnoses D1, D2, and
so on. Table I gives the translations of DI to D8. These probabilities
correspond to population incidences of diagnoses and total 1. Each P(D) is
known as a prior probability, as it is a probability assessed before obtaining
any further information.

TABLE I- Translation of diagnostic notation

D, Innocent systolic murmur
D2 Venous hum
D3 Bicuspid aortic valve
D4 Ventricular septal defect
D5 Atrial septal defect
D6 Patent ductus arteriosus
D7 Tetralogy of Fallot
D8 Pulmonary valve stenosis

At each phase of the investigation a clue to the diagnosis is given, which
may be the answer to a question, the result of examining, say, the pulse, or
the result ofa laboratory test. The clue may be single (for example, the age of
the patient) or composite (for example, the result of auscultation, which
includes analysis ofmurmurs and sounds).
The first clue is that the patient has been referred to me, which makes it

much more likely that the child has heart disease. The probability of each
diagnosis now becomes a conditional probability, also known in this case as a
posterior probability because it represents the probability after the clue has
been given. It is represented by P(DsICs), P(D2IC1 ... P(DnIC1). Cl is clue
one. The vertical line is translated as "given that." It is rather unlikely that
the conditional probability will be the same as the prior probability. For
example, P(D7), the population incidence of tetralogy of Fallot, is around
0 0007. P(D71C5), the probability that the child has tetralogy given that he
has been referred to me, is 0 05. P(DIICs), the probability that the child has
an innocent systolic murmur, given that he has been referred to me, is 0-4.
These conditional probabilities are simplest obtained by looking at all
outpatients referred to me over the past five years, counting the types of
diagnoses, and dividing by the number ofnew patients seen.
The second clue is that the baby is 3 months old. The conditional

probability ofDI, innocent systolic murmur, now becomes P(DI IC, and C2),
which is 0-05, because referring doctors usually adopt a "wait and see"
strategy at this age in fit patients who probably have innocent systolic
murmurs. On the other hand, P(D4ICI and C2) (ventricular septal defect)
becomes 0-35, P(D5ICI and C2) (atrial septal defect) becomes 0 3, P(D7IC1
and C2) (tetralogy) becomes 0-15, and P(DgICI and C2) (pulmonary valve
stenosis) becomes 0-08. These figures are rounded off for simplicity. Again,
they are best obtained by counting previously referred outpatients, this time
stratifying according to age. Note how critically these probabilities depend
on the nature of my referral practice. They differ widely from the
probabilities that would apply to a general practitioner or a consultant
paediatrician.

From local peculiarity to recorded cases

We now want to move on, however, from the peculiarities of the local
situation to the point at which we can use information gleaned from the
medical reports. To simplify matters we first note that at each phase of the
analysis except the first the posterior probability for the previous stage
becomes the prior probability for this one. Thus we may write P(D1*) =
P(D1 C, and C2), P(D2*) = P(D2ICI and C2), and so on.

Clue 3 is that the child is acyanotic and having no difficulty in breathing.
What we wish to know is P(D*IC3) for each diagnosis-for example, the
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probability that the child has a ventricular septal defect given that he looks
normal. Unfortunately, textbooks and original articles are not usually
written in such a way as to provide this information, because it requires, in
effect, a chapter entitled "Acyanotic. No respiratory distress." Such a
chapter heading would not even appear in a book on differential diagnosis.
To be sure, such a book would contain a chapter headed "Cyanosis," but it
can almost be guaranteed that all this chapter would contain is a list of
diseases, whereas we want a probability. What we may find is a chapter
headed "Ventricular septal defect," and with a bit of luck we can extract
from this P(C3lD4*), the probability that a child is acyanotic and in no
distress given that he has a ventricular septal defect, is 3 months old, and has
been referred to a consultant paediatric cardiologist (strictly speaking D4*
refers to this paediatric cardiologist, but we have to assume unless there is
good evidence to the contrary that the man who wrote the book is seeing the
same kinds of patients as we are).

Is P(C31D4*) ofany use to us? Not without Thomas Bayes, for his theorem
allows us to calculate P(D4*IC3) from P(C3ID4*).

For the general diagnosis D and the general clue C:
P(DlC)=P(CIlD)-*P(D)/(P(ClD)*P(D)+P(C lfD) *P(f))).
D, known as the complement ofD, indicates the absence of that diagnosis.

Now P(ClD P(D) is simply the sum of the products (P(CIDi) P(Di), where
the set of Di consists ofall mutually exclusive and exhaustive diagnoses apart
from the one under consideration. P(D)= 1-P(D). Thus we may calculate
P(CID) for each offive diagnoses, the four favourites and "everything else,"
to obtain the third column in table II. Each P(C D) corresponds to the false
positive rate of a test for that diagnosis that is regarded as being positive in
the absence of cyanosis or respiratory distress. It may be shown that the
denominator in Bayes's expression is equal to P(C), a result we shall use
later.
For ventricular septal defect P(C3ID4*) is 0 5 and P(C31D4*) is 0 54.
P(D4*IC3)=(0.5x0.35)/((0.5x0.35)+(0.54x0.65)), which gives the

probability that the child has a ventricular septal defect, given that there is
no cyanosis or respiratory distress. This is 0-35. The fourth column in
table II show the posterior probabilities for the five diagnoses. Note that the
probability of ventricular septal defect has remained unchanged, while
patent ductus arteriosus has become less probable as a result of this
observation. Pulmonary valve stenosis has edged ahead of tetralogy of
Fallot, as expected. The alert reader will have observed that it is possible to
calculate the figures in the fourth column of table II directly from those in the
first and second columns without calculating the values in the third column.
At each stage of the diagnosis these probabilities are revised until

pulmonary stenosis emerges as a clear favourite. Thus we see that the
diagnostic process originally described bears a remarkably close resemblance
to successive applications of Bayes's theorem, the differences being that
ranked probabilities rather than actual probabilities are used and no
calculations are consciously made. It seems likely, however, that the
reordering ofranked probabilities occurs as a result ofintuitive mathematics.
This interpretation is strengthened when it is appreciated that Bayes's
theorem can be rewritten as: posterior odds=prior odds likelihood ratio,
where prior odds are the ratio between the probability ofa diagnosis and the
probability of its complement and likelihood ratio is the ratio of the
probability of a positive clue in the presence and absence of the diagnosis.
Thus in the above example the prior odds on pulmonary valve stenosis

were 0-08/0 92-that is, 0-087. The likelihood ratio was 0 9/0 49-that is,
1-84. The posterior odds rise to 0087x184-that is, 0-16. In gambling
terms the odds against pulmonary valve stenosis have shortened from 11 to 1
(11 is the reciprocal of0 087) to 6 to 1. Gambling on horses would be a great
deal less popular were not punters confident oftheir intuitive ability to adjust
gambling odds in the light of new information. One further refinement of
this application is to take the natural logarithm ofthe likelihood ratio and call
this "the weight of evidence."3132

TABLE ii-Bayes's theorem applied to congenital heart disease. Note that probabilities
infirst andfourth columns total 1, whereas probabilities in second and third columns do
not

Disease P(D*) P(C3ID*) P(C31D*) P(D*1C3)

Ventricular septal defect (D4) 0 35 0 50 0-54 0 35
Patent ductus arteriosus (D6) 0 30 0 40 0-58 0-23
Tetralogy of Fallot (D7) 0.15 0 30 0-56 0)09
Pulmonary valve stenosis (Dg) 0-08 0 90 0-49 0-14
Everything else 0-12 0.95 0 47 0-22

P(D*)=Probability that diagnosis D* is correct.
P(C31D*)=Probability that child does not have cyanosis or respiratory distress given that
diagnosis D* is correct.
P(C31D*)=Probability that child does not have cyanosis or respiratory distress given that
diagnosis D* is incorrect.
P(D*"C3)=Probability that diagnosis D* is correct given that child does not have cyanosis or
respiratory distress.
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Bayes's theorem

A probabilistic approach is helpful not only because it models what some
clinicians do but, even more importantly, it also illuminates issues that are
not at all clear to many otherwise extremely competent diagnosticians. The
most striking ofthese issues is the way in which prior probabilities can affect
the usefulness of a test.
A good example is the hyperoxic test for congenital heart disease in

neonates who seem to be cyanosed. This consists of letting the baby breathe
100% oxygen for 10 minutes and then measuring the systemic arterial
oxygen pressure.33 Table III shows the results. In figure 1 (a) these have been
drawn as a probability tree. We take first the left hand tree. Here the prior
probabilities of cyanotic heart disease, acyanotic heart disease, and lung
disease have been obtained by dividing the column total of table III by the
grand total. These probabilities are inserted on the top three branches of the
tree. Eachoftheseforks into two, dependingonwhether thePo2> 150mmHg
or -150 mm Hg. These branches are labelled with the conditional
probability calculated by dividing the numbers in each cell oftable III by the
column total (for example, p(>1501cyanotic=2/109=0 02). Notice that the
probabilities on the branches of the tree are conditional on the events above
them.
As has already been pointed out, the conditional probabilities on this tree

are not particularly useful in diagnosis, but they are important in that we
may be fairly sure that if the same test is carried out in a different
environment the same conditional probabilities will emerge. In other words,
the sensitivity and selectivity of the test are reasonably robust.
To obtain diagnostic information we need to invert the network, as shown

in the right hand tree offigure 1 (a), to obtain probabilities conditional on the
result of the test rather than on the type of disorder present. This network
has two prior probabilities, corresponding to the two possible results, and
three branches for each, representing the diseases. It can be obtained from
table III by dividing the row totals by the grand totals to give the prior
probabilities and numbers in each cell by row totals to give conditional

TABLE iII-Results ofhyperoxic testfor congenital heart disease33

Congenital heart disease

Cyanotic Acyanotic Lung disease Total

Po2 (mm Hg):
>150 2 153 7 162
<150 107 0 16 123

Total 109 153 23 285

(a) Bromnpton Hospital

038 008

Cyanetic Acyanotic Lung
heart heart disease
disease dise /

0012 0 98 1 0 03 0-7

>150 ~C150 >150 :C150 >150 ~1I50

0-57/ \043

$>150 tt19~~~5

Cyanotic Acyanotic Lung Cyanotic Acyanotic Lung
heart heart disease heart heart disease
disease disease disease disease

P(> 150) = (0-02 x 0 38) + ( x 0-54) + (0-3 x 008)
p(cyanotic heart disease/ > 150) = (0-02 x 0 38)

P(>150)
(b) Neonatal intensive care unit

0 00 000
Cyanotic Acyanotic Lung Cyanotic Acyanotic Lung
heart hurt disease hert heart disease
disease dise disease disease

FIG l-(a) Probability trees corresponding to results ofhyperoxic test at specialist
referral centre for paediatric cardiology. Equations show calculation of posterior
probabilities for inversion of the probability tree. (b) Probability trees corre-
sponding to results of hyperoxic test at neonatal intensive care unit.
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TABLE iv-Posterior probabilities ofdiagnoses based on results oflhyperoxic test

Congenital heart disease

Cyanotic Acyanotic Lung disease

P02>150mm Hg:
Brompton 0 01 0 95 0)04
Neonatal intensive care unit 0-003 0-32 0-67

P02z 150mm Hg:
Brompton 0-87 0 0-13
Neonatal intensive care unit 0-13 0 0-87

BRITISH MEDICAL JOURNAL VOLUME 295 21 NOVEMBER 1987

(a) One dimensional

F1

probabilities. Using Bayes's theorem will give the same result. It is possible
to apply this directly to the network by observing that joint probabilities (for
example p(>150 and cyanotic)) are obtained by multiplying together the
probabilities on the pathways through cyanotic and >150. To obtain
p(>150) we sum the joint probabilities involving >150, which amounts
to calculating the denominator in Bayes's theorem. Any conditional
probability (for example, p(cyanoticl>150) is then calculated by dividing
the numerator in Bayes's equation (for example, p(cyanotic and >150) by
the denominator.

Table IV shows the posterior probabilities for the Brompton Hospital (a
specialist centre for paediatric cardiology and cardiac surgery). The
hyperoxic test is seen to be very useful in that if the Po2 >150mm Hg the
diagnosis is almost certainly acyanotic heart disease and highly unlikely to be
cyanotic heart disease. If, on the other hand, the Po2 -150mm Hg cyanotic
heart disease is highly likely (p=0 87).
Now let us consider the performance of this test in a typical neonatal

intensive care unit, where the cause of cyanosis in 80% of cases is lung
disease. The left hand network of figure 1 (b) has been calculated on the
assumption that cyanotic and non-cyanotic infants are distributed as for the
specialist centre but make up only 20% of the whole. The probabilities
conditional on the diagnosis are assumed to be the same as at the specialist
centre for reasons already given. This network has then been inverted as
already described to obtain the right hand network, and the probabilities
conditional on the result of the test have been transferred to table IV.
Observe that whatever the Po2 the likeliest diagnosis is lung disease. Why?
Because the priorprobabilityoflung disease is so high. What is a good test in
a specialist referral centre is really ofno use in a neonatal intensive care unit.
The second great advantage ofa probabilistic approach to diagnosis is that

with little extra computational effort it can be extended into decision theory
to allow the cost ofan investigation to be traded offagainst the information it
provides, thus increasing parsimony. Similarly, a decision analysis approach
allows us to decide how certain we have to be about a particular diagnosis
before we apply treatment on the assumption that the diagnosis is correct. As
decision theory will be covered later in this series no more will be said now,
but interested readers should refer to Weinstein et aPl and Macartney et al."

Computer applications
The mathematical foundation of Bayes's theorem makes it an ideal

computer model; probably the most successful diagnosis program yet
devised for a computer was an early application of Bayes's theorem to the
acute abdomen.u The computer was shown to be better than clinicians in
making the diagnosis. Equally important was the fact that implementing the
computerised system improved clinicians' performances by showing which
clues were most helpful in discriminating diseases.37 Other Bayesian systems
have been described for congenital heart disease,m classification of stroke,39
identifying those who will attempt suicide,40 diagnosing solitary pulmonary
nodules,4' and dyspepsia.42

If the "weight of evidence" as defined above is multiplied by 100 and
rounded off for convenience a rather simple means of summing the weights
of evidence for and against a particular diagnosis and working back to the
probability of that diagnosis can be obtained." The two advantages of this
approach are, firstly, that it allows statistical diagnosis without a computer
once the weights of evidence have been calculated and, secondly, that if a
computer is used the output consists of a list of weights of evidence that are
intuitively easily understood by the clinician. Thus the machine "explains"
how it has come to a particular diagnosis. Approaches by artificial
intelligence to diagnosis have always emphasised how important explanation
is43 and have criticised statistical methods for their failure to explain
themselves.44
One objection often raised to such uses of Bayes's theorem is that they

assume the conditional independence of clues-that is, that the probability
of a given clue in the presence of disease remains the same regardless of the
presence or absence of all the other clues. Clearly this does not always apply.
The probability of cyanosis given tetralogy of Fallot and finger clubbing is
not the same as that given tetralogy without finger clubbing, as finger

F2 (b) Two dimensional

0

* \

0\0

0

0

Pi1

FIG 2-(a) Discriminant function analysis in one dimension. (b) Discriminant
function analysis in two dimensions. (c) Discriminant function analysis in three
dimensions.

clubbing and cyanosis are almost always associated beyond the age of 1 year.
It is possible to apply Bayes's theorem without assuming conditional
independence,4' but the best way of dealing with the lack of conditional
independence is to use multivariate analysis, as described below.

Overall assessment
As a model ofclinical behaviour a Bayesian approach has been shown to be

as plausible as the hypotheticodeductive, certainly in those cases where the
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history is unimportant. The fact that the question oftransferability-that is,
whether the system developed in one environment will work in another-
has been raised so often in the context ofBayesian systems3946 seems to me to
be a strength of the Bayesian approach rather than a weakness, as however
diseases are diagnosed (unless by pathognomic clues, which are rare) prior
probabilities matter, and Bayes's theorem shows why.

Alternative statistical models allowing for conditional
dependence

One solution to the problem ofdependence is linear discriminant function
analysis, shown in figure 2. Figure 2 (a) shows the distribution of a
continuous variable F1 between two categories of patient, each with one of
two diagnoses. Values ofF, are displayed on a one dimensional line. A line at
right angles intersects this line at a point whose position is calculated to
maximise separation ofthe values ofF, for the two sets ofpatients, but there
is considerable overlap.
A second continuous variable F2 is added to the model at right angles to

F1; this allows the results to be displayed on a two dimensional plane (fig 2
(b)). The two disease spaces are now separated by a discriminant line, again
calculated to maximise separation of the two sets of patients. Overlap has
been reduced but is still present.
Now F3 is introduced at right angles to F, and F2. The observations now

occupy a three dimensional space separated by a two dimensional plane
(fig 2 (c)). Now complete separation of the two diagnoses has been achieved.
Furthermore (as with the first two stages), posterior probabilities for a single
patient can be calculated from the distance between the point corresponding
to that patient and the discriminant plane.
Three dimensions is as much as the human mind can imagine, but in

mathematics there is no limit to the number ofdimensions and therefore no
problem in conceiving a 31 dimensional space separated into two (or more)
components by a 30 dimensional space. Conditional dependence is allowed
for, as it alters the weights of the discriminant variables in the model.

Linear discriminant function analysis therefore provides a powerful
method of computer assisted diagnosis.47 Its use is commonly facilitated by
stepwise procedures that fit first the best discriminating feature, then allow
for this and fit the next best discriminator, and so on. By this means a
parsimonious set of relatively few discriminators may be selected. Forward
stepwise regression does not, however, necessarily pick the best set of
predictors. Such a procedure does not attempt to model human diagnostic
logic, although it can be explained in a way that makes sense to most
clinicians.
One disadvantage of linear discriminant function analysis is that the

calculation of posterior probabilities is not all that simple.4' Multiple logistic
regression has the advantage that, given the set of discriminators and their
weights, the likelihood ratio is easily calculated. Another possibility is non-
parametric discriminant analysis.49
The ultimate in statistical diagnosis is to make no prior assumptions about

diagnostic categories but to let the data speak for themselves. This
corresponds to syndromic diagnosis by computer. For obvious reasons this
approach has been mostly applied to the diagnosis ofmental illness, in which
there is considerable doubt about the validity of traditional diagnostic
categories. On the whole, however, these multivariate methods (factor and
cluster analysis) have proved to be disappointing.'

Conclusions

No explanation of human diagnostic logic so far conceived has
been entirely satisfactory, though study of the alternative models is
extremely instructive. Similarly, no method of diagnosis helped by
computers has been shown consistently to be superior to all others.
This is an exciting field of research precisely because it is so wide
open. The validation of approaches by artificial intelligence to
diagnosis has been particularly scanty-either non-existent or
based on fewer than 20 patients. It is essential that comparisons of
alternative diagnostic aids' "Is2 should be carried out as stringently
as are those at present for new therapeutic aids such as drugs.
FJM is supported by the Vanderbell and British Heart Foundations.
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