
the bmj | BMJ 2016;353:i3140 | doi: 10.1136/bmj.i3140

ReseaRch Methods and RepoRting

1

open access

1Research Institute for Primary 
Care and Health Sciences, Keele 
University, Keele ST5 5BG, 
Staffordshire, UK
2Institute of Applied Health 
Research, University of 
Birmingham, Edgbaston, 
Birmingham, UK
3Julius Centre for Health 
Sciences and Primary Care, 
University Medical Center 
Utrecht, Utrecht, Netherlands
4Cochrane Netherlands, 
University Medical Center 
Utrecht, Utrecht, Netherlands
5Centre for Statistics in 
Medicine, Nuffield Department 
of Orthopaedics, Rheumatology 
and Musculoskeletal Sciences, 
University of Oxford, Oxford, UK
Correspondence to: R D Riley 
r.riley@keele.ac.uk
Cite this as: BMJ 2016;353:i3140
http://dx.doi.org/10.1136/bmj.i3140

Accepted: 18 May 2016

External validation of clinical prediction models using big 
datasets from e-health records or IPD meta-analysis: 
opportunities and challenges
Richard D Riley,1 Joie Ensor,1 Kym I E Snell,2 Thomas P A Debray,3,4 Doug G Altman,5  
Karel G M Moons,3,4 Gary S Collins5 

Access to big datasets from e-health 
records and individual participant data 
(IPD) meta-analysis is signalling a new 
advent of external validation studies 
for clinical prediction models. In this 
article, the authors illustrate novel 
opportunities for external validation in 
big, combined datasets, while drawing 
attention to methodological challenges 
and reporting issues.
A popular type of clinical research is the development 
of statistical models that predict disease presence and 
outcome occurrence in individuals,1-3  thereby inform-
ing clinical diagnosis and prognosis. Such models are 
referred to here as diagnostic and prognostic prediction 
models, but they have many other names including risk 
models, risk scores, and clinical prediction rules. They 
are typically developed by use of a multivariable regres-
sion framework, which provides an equation to esti-
mate an individual’s risk based on values of multiple 
predictors (such as age and smoking, or biomarkers and 
genetic information). Figure 1  gives the format of equa-
tions based on logistic or Cox regression, which involve 
an intercept or baseline hazard term combined with 
multiple predictor effects (corresponding to odds or 

hazard ratios). Well known examples are the Framing-
ham risk score and QRISK2,4 5  which estimate the 10 
year risk of developing cardiovascular disease; the Not-
tingham prognostic index, which predicts the five year 
survival probability of a woman with newly diagnosed 
breast cancer;6 7 and the Wells score for predicting the 
presence of a pulmonary embolism.8 9

In 2009, The BMJ published a series of four articles to 
guide those undertaking prediction model research,2 10-12  
and further recommendations were made in the 2013 
PROGRESS series.3 13-15 These articles all emphasised 
three fundamental components of prediction model 
research: model development, external validation, and 
impact evaluation. 

Model development is the process that leads to the 
final prediction equation, and involves many aspects 
detailed elsewhere.2 16-18  Impact studies evaluate, ide-
ally in a randomised trial, whether the implementation 
of a prediction model in clinical practice actually 
improves patient outcomes by informing treatment 
decisions according to the model’s predicted risk. How-
ever, impact studies should not be considered until the 
robustness and generalisability of a developed model is 
verified in one or more external validation studies.3 19

External validation uses new participant level data, 
external to those used for model development, to exam-
ine whether the model’s predictions are reliable (that is, 
accurate enough) in individuals from potential popula-
tion(s) for clinical use.20  Unfortunately, most prediction 
research focuses on model development and there are 
relatively few external validation studies.3 21-23  This 
leads to a plethora of proposed models, with little evi-
dence about which are reliable and under what circum-
stances. Confusion then ensues: promising models are 
often quickly forgotten,24  and—of more concern—many 
models may be used or advocated without appropriate 
examination of their performance.25

A shortage of external validation studies is often 
attributed to the lack of data available besides those 
data used for model development. Data from one study 
(eg, a cohort study) usually have a limited number of 
events. Hence all data are best retained for model devel-
opment, rather than splitting the data so that a part is 
used for development and the remainder for valida-
tion.26  However, increasingly researchers have access 
to “big” data, as evident by meta-analyses using indi-
vidual participant data (IPD) from multiple studies,27-30  
and by analyses of registry databases containing 
 electronic health (e-health) records for thousands or 
even millions of patients from multiple practices, hos-
pitals, or countries.31

Summary pointS 
Clinical prediction models are used to predict the risk of disease presence and 
outcome occurrence in individuals, thereby informing clinical diagnosis and 
prognosis
Increasingly, researchers undertaking prediction model research have access to 
so-called “big” datasets from meta-analyses of individual participant data (IPD), or 
registry databases containing electronic health records for thousands or even 
millions of patients
Such big datasets heralds an exciting opportunity to improve the uptake and scope 
of external validation research, to check whether a model’s predictions are reliable 
In particular, they allow researchers to externally validate a model’s predictive 
performance (eg, in terms of calibration and discrimination) across all clinical 
settings, populations, and subgroups of interest
If a model has poor predictive performance, big datasets help identify if and how 
updating or tailoring strategies (such as recalibration) can improve performance for 
particular settings, clusters or subgroups (rather than simply discarding the model)
However, big datasets may also bring additional methodological challenges and 
reporting criteria
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For example, QRISK2 was developed by use of 
e-health data from the QRESEARCH database. The data-
base uses over 1.5 million patients (with over 95 000 
new cardiovascular events) from 355 randomly selected 
general practices,5  with external validation carried out 
by independent investigators in an additional 1.6 mil-
lion patients from another 365 practices.32  In the IPD 
meta-analysis setting, an example is the IMPACT con-
sortium, which developed a prediction model for mor-
tality and unfavourable outcome in traumatic brain 
injury. The consortium shared IPD from 11 studies (8509 
patients), and performed external validation using IPD 
from another large study (6681 patients).33

Such big, combined datasets heralds an exciting 
opportunity to improve the uptake of external valida-
tion research. Here, we describe the additional opportu-
nities, challenges, and reporting issues involved in 
prediction research in this situation. We begin by intro-
ducing two key performance measures (calibration and 
discrimination) and a review of current practice in 
external validation research. Then, using five empirical 
examples, we show how big datasets allow a model’s 
predictive performance to be more fully interrogated 

across different populations, subgroups, and settings. 
We conclude by signposting methodological challenges 
and reporting criteria, which build on the recent TRI-
POD statement for the transparent reporting of a multi-
variable prediction model for individual prognosis or 
diagnosis.34 35

predictive performance of a model in terms of 
discrimination and calibration
External validation of a prediction model typically 
involves quantifying a model’s discrimination and cali-
bration performance in data that were not used to 
develop the model. To be useful, a model’s predicted 
risks must discriminate (separate) well between those 
participants who do and do not have the outcome (dis-
ease or event) of interest. Discrimination is usually 
measured by the C statistic,18  and for survival outcomes 
also the D statistic (box 1).36  Calibration examines the 
agreement between predicted and observed risks, and 
can be quantified by measures such as the calibration 
slope and the expected/observed (E/O) statistic (box 1). 
Calibration can also be visualised graphically, for 
example, by plotting observed versus predicted risks 
across tenths of predicted risk,10  using a flexible cali-
bration plot with a smoothed non-linear curve gener-
ated using a loess smoother or splines,10 37  or displaying 
observed and predicted survival curves over time for 
different risk groups.38

Current shortcomings of external validation studies
A systematic review of 78 external validation studies 
published in 2010 concluded that “there is a dearth of 
well-conducted and clearly reported external validation 
studies.”39  Although model discrimination was usually 
reported, 68% of studies did not report evaluating 
model calibration, and only 11 (14%) presented a cali-
bration plot. It was also often unclear how missing data 
were handled and even which model (the original 
model or some simplified version of it) was being evalu-
ated. Further, sample size was often small, with 46% 
having fewer than 100 events, which is a minimum 
effective sample size suggested for external valida-
tion40 41  (although an increase to 200 was recently pro-
posed to assess calibration37 41 ). Other reviews have 
identified similar problems.21 23

A major problem of external validation studies is that 
they are often based on small and local datasets. For this 
reason, most external validation studies can, at best, 
assess the performance of a prediction model in a spe-
cific setting or population. However, it is increasingly 
recognised that the predictive performance of a model 
tends to vary across settings, populations and peri-
ods.20 30 42 43  This implies that there is often heterogeneity 
in model performance, and that multiple external vali-
dation studies are needed to fully appreciate the gener-
alisability of a prediction model.20  Although multiple 
datasets are increasingly available for this purpose,29  
studies with access to such data mainly focus on model 
development and often ignore external validation.28 
Hence, heterogeneity in model performance across pop-
ulations, settings, and periods is rarely assessed. 

Diagnostic or short term prognostic prediction models

Where the disease (for a diagnostic prediction model) or the outcome (for a prognostic prediction model) 

is truly known for all patients at a particular time point, then researchers typically use logistic regression 

to develop their prediction model, which is of the form:

ln                 = α + β
1
X

1
 + β

2
X

2
 + β

3
X

3
 + ...

Here, p is the probability of having or developing the disease or outcome, ln(p/(1-p)) is the log odds of 

the disease or outcome, the intercept term α is the baseline log odds (where “‘baseline” refers to 

individuals whose X values are all zero), each X term denotes values of included predictors (eg, X
1
 could 

be the age of the patient in years, X
2
 could be 1 for male individuals and 0 for female individuals, and so 

on), and each β denotes the change in log odds (or the log odds ratio) for each 1 unit increase in the 

corresponding predictor (eg, β
1
 is the increase in the log odds for each one year increase in age, and β

2
 

is the increase in the log odds for a male compared to a female, and so on). Absolute risk predictions 

(denoted by p) for a new individual can be obtained by inputting their predictor values into the equation 

and then transforming back to the probability scale:

Prognostic prediction models over time

When risks are predicted over time (or for a time point before which some individuals in the development 

data are censored), then researchers typically use a survival model (such as a Cox model or a parametric 

survival model) to obtain their prediction model, which is typically of the form: 

h(t) = h
0
(t) exp(β

1
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 + ...)

Here, h(t) is the hazard rate of the outcome at time t, the intercept term h
0
(t)  is the baseline hazard rate 

(where “baseline” refers to individuals whose X values are all zero), the X terms denote values of 

included predictors, and each β denotes the change in log hazard rate (or the log hazard ratio) for each 

1 unit increase in the corresponding predictor. Absolute risk predictions at time t (denoted by S(t)) for a 

new individual can be obtained by inputting their predictor values into the equation and then 

transforming back to the probability scale:

1 – S(t) = 1– S
0
(t) 

where S
0
(t) is the baseline survival probability at time t.
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Fig 1 | Format of typical prediction models seen in the medical literature 
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Similar deficiencies are apparent in external valida-
tion studies using big datasets from e-health records or 
disease registries. For example, after development of 
the QRISK2 model using routinely collected data from 
355 primary care practices, Hippisley-Cox and col-
leagues5  immediately evaluated the model’s perfor-
mance using further data from an additional 176 
practices. However, potential heterogeneity in model 
performance across these 176 practices was ignored, 
with calibration and discrimination only summarised 
across all practices combined. Similarly, the indepen-
dent external validation of QRISK2 by Collins and Alt-
man44 ignored between-practice heterogeneity. 
Therefore, it remains unclear whether QRISK2 performs 
better or worse in some practices, regions, or (sub)pop-
ulations than in others, and we return to this issue in 
examples 2 and 4 below.

What causes heterogeneity in model performance?
There are several potential causes of heterogeneous 
model performance across different settings and 

 populations,29 43 45  which can occur in isolation or in 
combination. A major reason is different case mix vari-
ation, which is similar to the “spectrum effect,”46 47  a 
term used to describe variation in test accuracy perfor-
mance across different populations and subgroups. 
Here “case mix” refers to the distribution of predictor 
values, other relevant participant or setting characteris-
tics (such as treatment received), and the outcome prev-
alence (diagnosis) or incidence (prognosis). Case mix 
variation across different settings or populations can 
lead to genuine differences in the performance of a pre-
diction model, even when the true (underlying) predic-
tor effects are consistent (that is, when the effect of a 
 particular predictor on outcome risk is the same regard-
less of the study population).43

It is, for instance, well known that the performance of 
models developed in secondary care is usually different 
when they are applied in a primary care setting, because 
the outcome prevalence or distribution of predictor val-
ues will be different.48  For example, the Wells score is a 
diagnostic prediction model for deep vein thrombosis, 
which was developed in secondary care outpatients. 
However, Oudega and colleagues49 show that it does 
not adequately rule out deep vein thrombosis in pri-
mary care patients, because 12% of patients in the low 
risk group had deep vein thrombosis compared with 3% 
in the original secondary care setting. The higher prev-
alence is due to a change in the selection and definition 
of patients with suspected deep vein thrombosis, lead-
ing to a different distribution of predictor values and 
case mix variation in primary care compared with sec-
ondary care.

The magnitude of predictor effects (denoted by β in 
fig 1 ) might also depend on the case mix itself. For 
example, in the cancer field, the effect of a biomarker 
may vary (interact) with particular subgroups, such as 
the stage of disease or the treatment received, and its 
relation with outcome risk might be non-linear. How-
ever, such interactions and non-linear trends are often 
missed (or mis-specified) when developing a model. 
Further, a biomarker is often measured differently 
(eg, by equipment from different manufacturers, or by a 
different assay or technique), recorded at a different 
time point (eg, before or after surgery), or quantified 
differently (eg, by a different cut-off point to define high 
and low values) across settings. Many other clinical, 
laboratory, and methodological differences can also 
exist, including differences in treatment strategies, clin-
ical guidelines, and experience; disease and outcome 
definitions; and follow-up lengths. All these problems 
may lead to heterogeneity in predictor effects.14 50 
 Subsequently, a developed model including predictor 
effects from one population might not perform well in a 
different population in which the magnitude of predic-
tor effects are different because of the change in case 
mix, and use of different clinical, laboratory, and meth-
odological standards.

Another key source is heterogeneity in the average 
prevalence (incidence) of the disease (outcome) to be 
predicted. This heterogeneity is caused, for example, by 
different standards of care and administered treatment 

Box 1: Key measures for calibration and discrimination

Calibration slope
For a perfectly calibrated model, we expect to see that, in 100 individuals with a 
predicted risk of r% from our model, r of the 100 truly have the disease (for diagnostic 
prediction) or outcome (for prognostic prediction) of interest. The calibration slope is 
one measure of agreement between observed and predicted risk of the event 
(outcome) across the whole range of predicted values,1 18 and should ideally be 1. 
A slope <1 indicates that some predictions are too extreme (eg, predictions close to 1 
are too high, and predictions close to 0 are too low), and a slope >1 indicates 
predictions are too narrow. A calibration slope <1 is often observed in validation 
studies, consistent with over-fitting in the original model development.

Expected/observed number of events (E/O)
E/O summarises the overall calibration of risk predictions from the model in the entire 
validation sample (it is closely related to the so-called “calibration in the large,”1 but 
more intuitive to interpret). It provides the ratio of the total expected to have disease 
(outcome) to the total observed with disease (or with outcome by a particular time 
point). Thus, an ideal value is 1. Values less than 1 indicate the model is under-
predicting the total number of events in the population, while values above 1 indicate 
it is over-predicting the total number events in the population. 
Sometimes, in addition to looking at E/O across the entire dataset, E/O is reported for 
groups of predicted risk (for example, by tenths of predicted risk). The E/O ratios then 
describe the shape of the calibration slope. Note also that sometimes the O/E ratio is 
presented; under-prediction then occurs for values above 1 and over-prediction for 
values less than 1.

C statistic
The C statistic is a measure of a prediction model’s discrimination (separation) between 
those with or without the outcome. Also known as the concordance index or, for binary 
outcomes, the area under the receiver operating characteristic (ROC) curve. It gives the 
probability that for any randomly selected pair of individuals, one with and one without 
the disease (outcome), the model assigns a higher probability to the individual with the 
disease (outcome). A value of 1 indicates the model has perfect discrimination, while a 
value of 0.5 indicates the model discriminates no better than chance.

D statistic
The D statistic is a measure of discrimination for time-to-event outcomes only.36 This 
can be interpreted as the log hazard ratio comparing two equally sized groups defined 
by dichotomising at the median value of the prognostic index from the developed 
model (where the prognostic index is defined by the combined predictor effects in the 
developed model, (that is, β1X1+β2X2+β3X3+ . . . ). Higher values for the D statistic 
indicate greater discrimination. A related statistic is R2

D.36
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strategies across regions and countries, and different 
starting points (eg, earlier diagnosis of disease in some 
populations due to a screening programme).13  This 
leads to differences across populations in the baseline 
risk, and thus the intercept (or baseline hazard rate; see 
fig 1 ) of a developed model might not be transportable 
from one population to another, leading to predicted 
risks that are systematically too low or too high. This is 
one reason for so-called “model updating,”51 where the 
intercept (baseline hazard) or predictor effects of a pre-
vious model are updated to recalibrate predictive per-
formance to the new population.

opportunities to improve external validation using 
big data
Here, we use five empirical examples to demonstrate 
how big datasets from e-health records or IPD 
meta-analysis allow researchers to examine heteroge-
neity and (if necessary) improve the predictive perfor-
mance of a model across different populations, settings, 
and subgroups. Examples 1 and 2 consider ways to 
investigate the extent of heterogeneity, whereas exam-
ples 3 to 5 examine the sources of heterogeneity and 
how to tailor (recalibrate) the model to the new 
 circumstances.

Example 1: Examining consistency in a model’s 
predictive performance across multiple studies
When data from multiple studies are available for exter-
nal validation, meta-analysis techniques (such as a ran-
dom effects meta-analysis52 ) can be used to quantify 
and summarise between-study heterogeneity in model 
performance.30 53 54  For example, Debray and colleagues 
developed a prediction model for the diagnosis of deep 
vein thrombosis in patients suspected of having the 

condition.45 The researchers performed external valida-
tion using 12 studies (10 014 patients in total; study 
sample sizes ranging from 153 to 1768 patients). Overall, 
1897 (19%) patients had deep vein thrombosis, and 
there were study differences in case mix and deep vein 
thrombosis prevalence. On average across the 12 stud-
ies, the overall calibration was excellent, with a sum-
mary E/O of 1.02 (95% confidence interval 0.79 to 1.32), 
revealing that total number of predicted and true cases 
of deep vein thrombosis was almost in perfect agree-
ment (that is, an E/O close to 1). However, a random 
effects meta-analysis revealed considerable between-
study heterogeneity. The I2 statistic was 97%, which 
indicated that 97% of the total variation in the study 
estimates was due to between-study heterogeneity. The 
large heterogeneity is also evident in the forest plot 
(fig 2), with large variation in study estimates and many 
non-overlapping confidence intervals. The summary 
E/O estimate was therefore an incomplete picture, 
because performance in particular populations could 
vary considerably from the average.

Rather than focusing on I2, which might be mislead-
ing when the study sample sizes are large,55  the extent 
of heterogeneity in model performance is better quanti-
fied by a 95% prediction interval.52 Debray and col-
leagues calculated an approximate 95% prediction 
interval for E/O in a new population, which was wide 
(0.38 to 2.72), indicating potentially large under-predic-
tion (that is, E/O<1) or over-prediction (that is, E/O>1) of 
risk of deep vein thrombosis in some populations, a 
finding that was masked by focusing solely on the 
excellent summary performance. 

Similarly, the approximate 95% prediction interval 
for the C statistic was 0.64 to 0.73, indicating heteroge-
neous (and often only moderate) discrimination perfor-
mance. The model was therefore deemed inadequate: it 
requires improvements (eg, recalibration or additional 
predictors) to reduce heterogeneity and improve dis-
crimination to be clinically useful toward an accurate 
diagnosis of deep vein thrombosis. Indeed, other mod-
els for diagnosis of the disorder containing more predic-
tors already exist, and appear to perform well across 
different subgroups and settings.56

Example 2: Examining consistency in performance 
across multiple practices
Given big datasets from e-health records or disease reg-
istries, external validation can also use meta-analysis 
techniques to examine heterogeneity in model perfor-
mance across different clusters—such as practices, hos-
pitals, or countries where case mix and outcome 
prevalence (incidence) are likely to vary. Indeed, each 
cluster might be viewed as a different external validation 
study. For example, we extended Collins and Altman’s 
external validation of QRISK2 using data from 364 gen-
eral practices,44 by performing a random effects 
meta-analysis to summarise the C statistic. The sum-
mary (average) C statistic was 0.83 (95% confidence 
interval 0.826 to 0.833). However, there was high 
between-practice heterogeneity in the C statistic 
(I2=80.9%) and the approximate 95% prediction interval 

0.5 1 2 3

E/O

Study

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12

Summary
with 95% prediction 
interval  

E/O (95% CI)

1.42 (1.21 to 1.66)

0.49 (0.45 to 0.54) 

1.25 (0.89 to 1.77) 

0.69 (0.64 to 0.75) 

1.22 (1.01 to 1.47) 

1.04 (0.92 to 1.18) 

2.08 (1.78 to 2.42) 

0.71 (0.60 to 0.85) 

0.92 (0.83 to 1.02) 

1.07 (0.85 to 1.34) 

0.83 (0.71 to 0.97) 

1.55 (1.15 to 2.11) 

1.02 (0.79 to 1.32) 

Weight (%)

8.45 

8.67 

7.46 

8.69 

8.33 

8.57 

8.47 

8.38 

8.63 

9.14 

8.47 

7.72 

100.00 

I2=97%

0.38 to 2.72

Fig 2 | Calibration performance (as measured by the E/O statistic) of a diagnostic 
prediction model for deep vein thrombosis,45 over all studies combined and in each of the 
12 studies separately. E=total number expected to have deep vein thrombosis according to 
the prediction model; O=total number observed with deep vein thrombosis; I2=proportion 
(%) of variability in the ln(E/O) estimates in the meta-analysis that is due to between-
study variation (genuine differences between studies in the true ln(E/O)), rather than 
within-study sampling error (chance)
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for the true C statistic in a new practice was wide (0.76 to 
0.88), although containing values that would typically 
be considered moderate or high discrimination.

Following such a meta-analysis, the use of forest 
plots to display cluster specific and meta-analysis 
results is often impractical given the number of clus-
ters, such as the hundreds of practices observed within 
e-health records (such as the Clinical Practice Research 
Datalink (CPRD) and The Health Improvement Network 
(THIN)). A useful alternative approach to visualise any 
variability in model performance at the cluster level is 
to present plots of performance estimates versus their 
precision (or sample size). 

Figure 3  shows a plot of the C statistic for QRISK2, for 
each of the 364 included general practices, versus 
either the number of outcome events in the practice or 
the standard error of the C statistic on the scale used in 
the meta-analysis.57  Such plots are often called funnel 
plots, and indeed in figure 3a the distinctive funnel 
shape is reasonably well observed, where small prac-
tices (in this instance, defined on the x axis by the num-
ber of outcome events) show a wider variation in the C 
statistic than larger clusters. The extremes of the funnel 
help reveal particular general practices where the 
model is performing much better, or much worse, than 
on average. 

A formal statistical way to identify practices with 
extreme predictive performance is shown in figure 3b, 
where an approximate 95% interval is added to reveal 
where C statistic estimates are predicted to lie, given the 
standard error observed. Those points (in red) denote 

practices that fall outside the predicted range, with 
those below the lower boundary of particular interest. 
Of course, as this is a 95% interval, by definition we 
expect 5% of all practices to fall out of the region by 
chance. Nevertheless, we find it a helpful approach to 
identify, from hundreds of practices, those practices 
worthy of extra attention. In particular, it motivates 
enquiry to identify any striking reasons (aside from the 
play of chance) why the model performs so differently 
in these practices.

Example 3: Examining performance in clinically 
relevant subgroups
Just as stratified medicine research examines whether a 
treatment works better or worse for some subgroups 
than others,15  the use of big datasets allows prediction 
model research to examine whether a model is more 
accurate for some subgroups than others. For example, 
the performance of QRISK2 has been examined in dif-
ferent ethnic groups58 59  and in patients with diabetes.60 
The examination of patients with diabetes was con-
ducted in response to a recommendation by the 
National Institute for Health and Care Excellence to not 
use QRISK2 in patients with type 1 or 2 diabetes.

The recent TRIPOD guideline34 35  also indicates that a 
model’s predictive performance should be evaluated in 
relation to key variables, such as age or sex subgroups, 
rather than just across all individuals combined, which 
can mask any deficiencies in the model. For example, 
an external validation study of QRISK2 and the 
 Framingham risk score assessed model calibration both 

Fig 3 | Funnel plots of discrimination performance (as measured by the C statistic) of QRISK2, across all 364 general 
practice surgeries in the external validation dataset of Collins and Altman.44 Plots show C statistic versus (a) number of 
cardiovascular events and (b) standard error of logit C statistic

No of participants

C 
st

at
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C statistic

0.2 0.4 0.6 0.8

Summary (average) C statistic from meta-analysis
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in the entire cohort (by each tenth of predicted risk) but 
also by age groups.44  Over the entire sample of 1.1 mil-
lion women in the cohort (from the THIN database), 
both models showed good overall calibration between 
predicted and observed 10 year cardiovascular risk, 
with an E/O of 1.01 for QRISK2 and 1.03 for the Framing-
ham risk score. This is illustrated in figure 4a, although 
there is slight over-prediction observed in women at 
higher 10 year cardiovascular risk, which is more pro-
nounced for the Framingham risk score.

The big datasets enable further interrogation of pre-
dictive performance, for example, by five year age 
groups (fig 4b ). It is immediately apparent that Fram-
ingham over-predicts the 10 year cardiovascular risk in 
women aged 40 to 64 years and under-predicts risk in 
women aged 70 to 74 years (fig 4b ). By contrast, QRISK2 
seems to accurately predict 10 year cardiovascular risk 
across all age groups. This was not revealed by the sum-
mary calibration plot typically used (fig 4a). Further 
work could also examine between-practice heterogene-
ity in the calibration performance for each age group, 
and similarly look at performance within categories of 
other important subgroups (eg, ethnicity).

Example 4: Examining sources of heterogeneity in 
model performance
Where model performance is heterogeneous, the 
sources of heterogeneity can be investigated. For exam-
ple, Pennells and colleagues30 used IPD from multiple 
studies to evaluate a prediction model for coronary 
heart disease, and showed (using meta-regression) that 
its discrimination performance improved in studies 
with a larger standard deviation of age. Every five year 
increase in standard deviation improved the C statistic 
by about 0.05. Thus, larger case mix variation (mea-
sured here by the variability of age in each population) 
is related to larger discrimination performance; in other 
words, populations with a narrower case mix (more 
homogeneous predictor values across individuals) tend 
to have worse discrimination performance. 

We further extended our investigation of QRISK2, and 
found that the C statistic decreases across practices as 
the population’s mean age and percentage of smokers 
increase (fig 5). This suggests that discrimination as 
measured by the C statistic is lower in populations with 
a higher risk of cardiovascular disease, which again 
could be due to narrower case mix variation, but could 
alternatively (or additionally) be due to differences in 
the magnitude of predictor effects in such populations. 
This is now subject to further research.

Example 5: Examining model recalibration 
strategies (model updating)
Snell and colleagues53  used IPD from eight countries to 
externally validate a prediction model of mortality risk 
over time in patients with breast cancer. They identified 
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Fig 4 | Calibration of QRISK2 and the Framingham risk score in women aged 35 to 74 years, (a) by tenth of predicted risk 
augmented with a smoothed calibration curve, and (b) within eight age groups. Dotted lines=denote perfect calibration
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Fig 5 | Association between percentage of smokers and 
C statistic for QRISK2 across all 364 general practice 
surgeries in the external validation dataset of Collins and 
Altman.44 Circle size is weighted by the precision of the 
C statistic estimate (that is, larger circles indicate C statistic 
estimates with smaller standard errors, and thus more 
weight in the meta-regression). Note: the solid line shows 
the meta-regression slope when data are analysed on the 
C statistic scale; similar findings and trends were obtained 
when reanalysing the logit C statistic scale
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large between-country heterogeneity in calibration per-
formance, as shown by a wide 95% prediction interval 
for the calibration slope (0.41 to 1.58; fig 6a). This sig-
nals potential differences in the baseline mortality rates 
across countries, or differences in the effects of included 
predictors. It is also possible that important predictors 
(such as interactions and non-linear effects) are miss-
ing from the model that would otherwise explain such 
differences.

In such situations, researchers might be tempted to 
discard the model entirely but this is premature, 
because performance can often be improved if (simple) 
recalibration strategies are allowed.20  Recalibration is a 
form of model updating, where particular components 
of the developed model (such as the intercept or base-
line hazard rate, or even particular predictor effects) are 
modified or tailored for each study population of inter-
est. For instance, Snell and colleagues extend their 
work by examining whether the model’s calibration 
performance improves with recalibration of the base-
line hazard function in each country. So although the 
model’s predictor effects were not modified, the base-
line hazard of the developed model was re-estimated 
for each country to enhance risk predictions. This 
is  akin to diagnostic test research, where post-test 

 probabilities are best tailored to the disease prevalence 
of the population at hand.61-63  There was a dramatic 
improvement in the breast cancer model performance 
(fig 6b): I2 fell from 98% without recalibration to 35% 
with recalibration, and the updated 95% prediction 
interval for the calibration slope was 0.93 to 1.08, which 
is now narrow and close to 1. The importance of base-
line risk recalibration is also shown elsewhere.51 64

practical and methodological challenges
Although the availability of big datasets offers many 
opportunities for external validation research, poten-
tial methodological challenges also arise.28 29 65  In par-
ticular, missing predictor values are likely in some 
participants and there may be systematically missing 
predictors, which occurs when a predictor is not mea-
sured for any individuals in one or more studies (clus-
ters). Advanced multiple imputation techniques are 
then necessary (under a missing at random assump-
tion),66 67 otherwise the prediction model cannot be val-
idated in the clusters with missing predictors. Further, 
although exploration of heterogeneity in model perfor-
mance is an opportunity, the potential causes of hetero-
geneity should ideally be specified in advance, to avoid 
data dredging and spurious (chance) findings.

The quality of e-health records is of particular con-
cern, because they contain data routinely collected that 
might not be as rigorous as the IPD from a meta-analysis 
of research studies. A dataset being large does not 
imply it is of high quality; indeed, the opposite may be 
true. In relation to CPRD, Herrett and colleagues68 state: 
“The quality of primary care data is variable because 
data are entered by GPs [general practitioners] during 
routine consultations, not for the purpose of research. 
Researchers must therefore undertake comprehensive 
data quality checks before undertaking a study.” 
Among others, particular weaknesses include:

•	 Missing data (and its potential to be missing not at 
random)

•	 Non-standardised definitions of diagnoses and out-
comes

•	 The need to interpret an absence of a “read code”’ for 
a disease or outcome as absence of the disease or out-
come itself, when sometimes patients with the dis-
ease or outcome simply fail to present to the general 
practitioner

•	 Incomplete follow-up times and event dates (such as 
hospital admission and length of stay)

•	 Lack of recording of potentially important and novel 
predictors. 

Thus, just as IPD meta-analyses should examine the 
risk of bias of included studies,69 researchers using 
e-health or routine care registry databases should 
examine the quality of their data.

Research using big datasets can also be expensive. 
For example, according to the general terms and condi-
tions on the CPRD website (https://www.cprd.com/
dataAccess/) for “the sum £255,000 per annum the 
Licensor grants the Licensee a limited, non-exclusive 
and non-transferable licence on the terms of this 

Fig 6 | Calibration performance (as measured by the calibration slope) of the breast cancer 
model evaluated by Snell and colleagues53 before and after recalibration of the baseline 
mortality rate in each country. (a) Forest plot assuming the same baseline hazard rate in 
each country (no recalibration). (b) Forest plot allowing a different baseline hazard rate for 
each country (recalibration)
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Licence for up to 2 Nominated Users to access the 
 Services.” Costs are reduced for certain parties, for 
example, at about £130 000 ($187 500; €228 400) per 
year for academia in our experience. The use of large 
data from established cohorts (such as UK Biobank) is 
an alternative and much cheaper option; for example, 
according to their website (www.ukbiobank.ac.uk/ 
scientists-3/), access to UK Biobank data costs 
“£1,500+VAT (where applicable) per application that 
requires access to data only”. However, such cohorts 
often have a narrower case mix than the wider popula-
tion, due to specific entry criteria; for example, UK Bio-
bank recruited individuals aged between 40 and 69 
years. 

For IPD meta-analysis situations, it can also be 
expensive, time consuming, and generally painstaking 
to obtain and clean the raw data from multiple stud-
ies.70  Further, not all desired studies may provide their 
IPD, and the available IPD might be from a selective, 
non-random part of the evidence base.71 Another chal-
lenge to the use of IPD from multiple studies—or multi-
ple e-health or registry datasets—is how to identify and 
deal with individuals who contribute data to more than 
one dataset.

Researchers might also want to use the large dataset 
to both develop and externally validate a model. Thus, 
they need to decide whether and how a subset of the 
data is excluded for the validation phase. Big datasets 
from e-health records often contains hundreds of clus-
ters and thousands of participants and events; in such 
situations, a sensible approach is to omit 20 or more 
clusters for external validation, which are chosen in 
advance (non-random sample) to cover a wide range of 
different populations, settings, and case mix variations. 

In an IPD meta-analysis, where the number of studies 
(k) is typically fewer than 10 studies, a process known 
as internal-external cross validation has been proposed 
to combine model development with validation.42 45 
Here, all but one of the studies are used for model 
 development, with the remaining study used for exter-
nal validation. This process is repeated a further k−1 
times, on each occasion omitting a different study to 
ascertain external validation performance. If perfor-
mance is always adequate, a final model may be devel-
oped using all studies. Otherwise, it flags heterogeneous 
study populations where a developed model might not 
perform well, and signals that model updating strate-
gies might be needed (such as recalibration). We note, 
however, that each cycle should ensure an adequate 
sample size for model development72-74  and the use of 
appropriate model derivation techniques (eg, adjust-
ment for optimism).16 26 Otherwise, poor performance 
could simply reflect small sample sizes, overfitting, and 
substandard development techniques.

For model development, the use of big datasets could 
lead to many candidate predictors being statistically 
significant, even when they only improve prediction by 
a small amount. Therefore, a more considered process 
of predictor selection (eg, based on clinical relevance 
and magnitude of effect, not just statistical signifi-
cance) will be required to avoid inclusion of a vast 

 number of predictors unnecessarily. It might also be 
helpful to ascertain which candidate predictors are het-
erogeneous across clusters, to limit eventual heteroge-
neity in model performance; Wynants and colleagues 
suggest the residual intraclass correlation for this pur-
pose.75  Further details of the methodological challenges 
facing IPD meta-analysis of prognosis research are 
given elsewhere.28 65

reporting of external validation studies that use big 
datasets
Box 2 provides some initial suggestions to extend the 
recent TRIPOD statement for reporting external valida-
tion studies that use big datasets.34 35  Ideally, these 
should be refined and potentially extended in an inter-
national consensus process, and work on this has 
begun by the TRIPOD initiative. Our aim with box 2 is to 
provide some interim guidance for researchers, which 
also draw on the recent PRISMA-IPD guidelines.76  
Graphical displays presenting model performance are 
particularly important. In particular, forest and funnel 
plots can be used to display meta-analyses as shown 
above, ideally with calibration plots for the whole data-
set and in each cluster separately, as shown else-
where.42 45

Conclusions
We have highlighted how big datasets from multiple 
studies and e-health or registry databases provide novel 
opportunities for external validation of prediction mod-
els, which we hope will encourage researchers to inter-
rogate the adequacy of prediction models more 
thoroughly. In particular, researchers should use their 
big datasets to check a model’s predictive performance 
(in terms of discrimination and calibration) across clin-
ical settings, populations, and subgroups. Simply 
reporting a model’s overall performance (averaged 
across all clusters and individuals) is not sufficient 
because it can mask differences and important deficien-
cies across these clusters and subgroups. Potential 
users need to know whether a model is reliable or trans-
portable to all the settings, populations, and groups 
represented in the data. 

If a model does not have consistent predictive perfor-
mance, users must know the potential magnitude of the 
inaccuracy to make a better judgment of the model’s 
worth, and in whom. Further, users should be told 
when, and which type of, model updating or tailoring 
strategies (such as recalibration) are necessary for par-
ticular settings or clusters, and by how much they 
improve predictive performance.20  We demonstrated 
these issues using empirical examples. Sometimes, 
even with updating or tailoring strategies, a model may 
not be transportable to particular settings, and an 
entirely new model might be required. For example, a 
model that was developed from practices containing 
predominately one ethic group are unlikely to perform 
as well in the wider population of the United Kingdom 
if there is heterogeneity in predictor effects and base-
line risks across different ethnic groups. In such situa-
tions, important predictors are missing from the model. 
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An example is the Cambridge diabetes risk score, which 
was developed from practices in predominately white 
population areas of the UK, and does not discriminate 
as well as the QDS score (now known as QDiabetes), 
which was developed on a wider set of ethnically 
diverse practices.77

Our work agrees with Van Calster and colleagues,37  
who encourage researchers to examine a model’s cali-
bration performance to a higher level. They state that “a 
flexible assessment of calibration in small validation 
datasets is problematic,” but our examples show how 
big datasets can help deal with this. Other issues might 
also benefit from big datasets, such as comparing (and 
even combining78 ) multiple competing models,79  and 
examining the added value of a new predictor,30  for 
example, in terms of the net benefit for clinical decision 
making.80  A full discussion of the different research 
questions one may address in big datasets, such as an 
IPD meta-analysis, for clinical prediction model 
research is given by Debray and colleagues.29

In conclusion, access to big datasets from, for exam-
ple, e-health records, registry databases, and IPD 
meta-analyses should signal a new approach to  external 
validation studies in risk prediction research, for either 
diagnostic or prognostic purposes. Recent articles in 

The BMJ call for data sharing to be “the expected 
norm,”81  and for synthesis of IPD to have greater impact 
on clinical guidelines.82 Our examples reinforce why 
such calls are of utmost relevance for the validation of 
prediction models, as we strive to ensure developed 
models are reliable and fit for purpose in all the settings 
of intended use.
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Box 2: Suggested initial extensions to the TRIPOD guidelines3435 for the reporting of external validation studies that use big datasets (such as 
those generated from IPD meta-analysis or e-health databases)

How data were obtained
When using data from multiple studies, describe:
•	How the studies were identified (eg, systematic review, collaborative project of selected researchers)
•	Which studies were approached for their data, and how (eg, email, letter)
•	The proportion of identified studies that agreed to provide their data, and the design of these studies (eg, randomised trials, cohort studies, 

cross sectional studies)
•	Whether studies providing IPD were similar (eg, in terms of their populations, design) to studies without IPD.
When using data from e-health records, describe the process toward obtaining the data and whether multiple databases were used (for example, 
for linkage of predictor and outcome information).

Clustering in the data
Summarise the clustering in the data (eg, due to practices, hospitals, studies) and the different populations each cluster represents (eg, different 
regions, countries).
State the number of clusters in the entire dataset and the number of patients and events in each. If the number of clusters is large, then—for ease 
of presentation—the distribution of patient characteristics and events across clusters might be displayed by histograms and summary measures 
such as the mean, median, standard deviation, and minimum and maximum.
Report differences in case mix variation across clusters (eg, in the mean or standard deviation of predictor values), perhaps with a summary table 
or graphical display of baseline characteristics in each cluster.
Provide details of any other inconsistencies across clusters, for example, in the definition and measurement of predictors, the classification of the 
disease or outcome to be predicted, and the treatment strategies used.

External validation analyses
For each external validation analysis, state the numbers of patients, events, and clusters that were used.
Explain any methodological challenges in using or combining the data across clusters. In particular, state how any missing data were handled in 
each cluster (especially systematically missing predictors) and how any between-cluster differences in predictor or event definitions were handled.
Report the external validation performance in the whole dataset, including a weighted (meta-analysis) average across clusters, and in relation to 
clinically relevant subgroups or important variables.
Summarise the external validation performance in each cluster (eg, in a forest or funnel plot), and quantify the between-cluster heterogeneity in 
performance, for example, via a random-effects meta-analysis and deriving 95% prediction intervals for calibration and discrimination 
performance in a new cluster.
Explain any model updating (eg, recalibration) techniques examined, and report how average performance and heterogeneity in performance 
improves (or worsens) after updating.
Provide graphical displays to supplement the results, such as forest (or funnel) plots to display the meta-analyses, and calibration plots covering 
tenths of predicted risk and relevant subgroups, ideally for the whole dataset and in each cluster separately.
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commercial use, provided the original work is properly cited. See: 
http://creativecommons.org/licenses/by/3.0/.
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