Breast cancer remains the second most common cause of cancer related death in women in the United Kingdom, with over 12,000 deaths a year. However, substantial progress is being made: deaths from breast cancer in the Western world have fallen by over 25% in the past two decades, reflecting substantial improvements in management (fig 1). Incidence in Great Britain has risen by 50% over the past three decades, reflecting not only changes in population demographics and environmental factors but also an increase in diagnosis as a result of screening. Over a similar time period mortality has fallen.

We review here the recent advances in the prevention, screening, and treatment of breast cancer and the recent efforts to individualise treatment. The review is published in two parts; in the second part we will review advances in the systemic treatment of breast cancer and how an increasing understanding of the biology of breast cancer is beginning to change the way we treat the disease.

Primary prevention
What risk factors may be avoidable?
Progress in primary prevention has come from improved understanding of the causes of breast cancer; identification of modifiable risk factors such as avoidance of post-menopausal obesity, increased exercise, reducing alcohol intake; and encouragement to breast feed (see www.breakthrough.org.uk and www.cancer.gov, which review these issues comprehensively). No conclusive evidence exists of risk from specific dietary components, such as dairy products and fat, other than that mediated through the link with obesity. Similarly, randomised studies examining reduced dietary fat in secondary prevention, after treatment for early breast cancer, have found no consistent effect on recurrence of breast cancer.

Prolonged exposure to exogenous oestrogen has now been confirmed as a risk factor for post-menopausal women. The women’s health initiative, followed by the million women study, confirmed that hormone replacement therapy with combined oestrogen and progesterone doubled the risk of breast cancer, whereas oestrogen-only therapy increased the risk by 30%. The use of combined therapy represents a potentially key modifiable factor, and in the United States the incidence of breast cancer fell significantly after many women stopped taking long term hormone replacement therapy.

Interest has been expressed in the interaction between environmental risk factors and genetic predisposition. Some risk factors probably have a higher impact in some genetic backgrounds than in others. Large cohort studies are under way that will help identify these interactions, including the UK breakthrough generations study (www.breakthroughgenerations.org.uk). Can drugs be used to prevent breast cancer?
On the basis of the evidence linking cumulative oestrogen exposure to breast cancer, randomised studies of chemoprevention were started over 20 years ago, initially with tamoxifen, a selective oestrogen receptor modulator. These studies recruited women considered to be at higher risk of developing breast cancer because of their family history or their Gail risk score (a score of risk of breast cancer). They found that tamoxifen taken for five to eight years reduced the risk of developing invasive breast cancer by 38%. Whether this would also apply to women without risk factors is less clear. Another selective oestrogen receptor modulator, raloxifene, was noted to reduce the risk of breast cancer in women not selected for breast cancer risk, in a study of osteoporosis treatment. A subsequent randomised trial of nearly 20,000 post-menopausal women at risk of breast cancer found that the preventive effect of raloxifene was similar to that of tamoxifen.

Despite the reduction in breast cancer incidence with tamoxifen and raloxifene, there has been no improvement in breast cancer specific mortality or in overall survival, although these studies were not powered to detect a small effect on mortality. Tamoxifen was associated with side effects with a small increase in the incidence of endometrial cancer, venous thromboembolism, stroke, and cataracts; however, these were less frequent with raloxifene and are uncommon in younger women. The failure to improve survival may reflect the types of cancer prevented by selective oestrogen receptor modulators (only the less aggressive oestrogen receptor positive breast cancers, many of which would have been cured on presentation).
These limited benefits with selective oestrogen receptor modulators have led to their approval for breast cancer prevention in the United States but not in Europe. The preventive effects of aromatase inhibitors are currently being examined in the second international breast cancer intervention study (IBIS II).

What evidence exists for prevention in high risk groups? Women with germline mutations in the genes BRCA1 and BRCA2 have a lifetime risk of developing breast cancer of up to 80%, and advances in breast cancer genetics have led to the recent identification of several new predisposition genes. In addition, women who received thoracic irradiation for Hodgkin’s disease after menarche and before age 30 have a substantial increased risk of breast cancer. Whether the preventive strategies discussed above reduce risk for high risk groups (especially those with different genetic backgrounds) is uncertain.

Preventive strategies that have been investigated specifically in women with mutations of the genes BRCA1 and BRCA2 include:

- Tamoxifen: insufficient women with BRCA1 and BRCA2 mutations were included in the tamoxifen studies for meaningful conclusions to be drawn. No data have been reported with raloxifene
- Bilateral oophorectomy, as well as reducing risk of ovarian cancer by up to 85% reduces the risk of breast cancer by 50%
- Bilateral risk reducing mastectomy cuts the risk of breast cancer by 90% (some breast tissue is left behind after mastectomy).

Recently the uptake of these strategies has been reported in a study of over 2600 women with BRCA1 and BRCA2 mutations from nine different countries at a median of 3.9 years after genetic testing; 57% of women had a prophylactic oophorectomy, 18% had a risk reducing mastectomy, and 9% (who had not had a risk reducing mastectomy) had hormonal chemoprevention. Just under half of women with known BRCA1 and BRCA2 mutations had not taken up a preventive strategy and relied on radiological screening alone.

Screening

How beneficial is mammography?

A Cochrane review concluded that mammographic screening reduces the risk of dying of breast cancer by about 15%, at the expense of a 30% increase in diagnosis. About 2000 women need to be screened for 10 years to prevent a single death from breast cancer. Over the same period 10 women will be diagnosed with breast cancer that would otherwise have remained clinically occult, never to be diagnosed. However, no consensus exists over the benefit of mammographic screening, and other analyses have concluded that mammography is more effective than the Cochrane review suggested, and these quote reductions in mortality of up to 35%. Across Europe and the United States no consensus exists on the age for starting screening or on frequency.

Is magnetic resonance imaging an advance on mammography?

Contrast enhanced magnetic resonance imaging has been shown to be more sensitive than mammography in detecting invasive breast cancers in high risk populations. In the UK MARIBS study of women with a strong family history of breast cancer, the sensitivity of annual mammography was estimated at 40%, compared with 77% for magnetic resonance imaging and 94% for combined magnetic resonance imaging and mammography. Concerns have been expressed about the specificity of magnetic resonance imaging (83% alone and 77% for combined, compared with 93% for mammography).

Magnetic resonance imaging is also more sensitive at identifying the non-invasive early stages of breast cancer (ductal carcinoma in situ); in one study it detected 92% of cases before surgery whereas mammography detected 56%.

In the UK, the National Institute for Health and Clinical Excellence (NICE) has advised annual screening with magnetic resonance imaging for high risk women from age 30 (or age 20 with germline P53 mutations). Magnetic resonance imaging for breast screening, however, presents substantial financial and resource concerns, which have yet to be fully resolved in the UK. Moreover, the impact on breast cancer mortality of screening with magnetic resonance imaging is unknown.

Local treatment of early stage disease

The diagnosis of breast cancer by triple assessment (clinical, radiological, and pathological, increasingly with core biopsy) is established in the context of multidisciplinary management. Magnetic resonance imaging is useful in selected cases to define tumour extent, especially in invasive lobular breast cancer, and to detect multifocal disease before surgery and assess the contralateral breast (fig 2). Functional imaging with positron emission tomography using fluorodeoxyglucose (FDG-PET) is accepted in the staging of many cancers but is not routinely used in breast cancer at diagnosis.

Fig 1 Age standardised (European) incidence and mortality rates of breast cancer in women in Great Britain, 1975-2005. Adapted from Cancer Research UK (http://info.cancerresearchuk.org/cancerstats/types/breast/).
How is surgery for breast cancer advancing?
Recent advances in surgery have focused on reducing morbidity. Breast conserving surgery by wide local excision is the preferred option, with mastectomy predominantly reserved for tumours not suitable for wide local excision and for patients who request it. In selected cases where breast conserving surgery is not possible, neoadjuvant chemotherapy or hormone therapy may be used to “downstage” the tumour, thus potentially allowing conservative surgery (fig 2).

Sentinel lymph node biopsy
At surgery the axillary nodes are dissected to provide prognostic information that will guide adjuvant therapy and to achieve local control. Biopsy of the sentinel lymph node is accepted as the standard of care in early breast cancer, with removal of the first lymph node or nodes that drain the tumour. The decision to proceed to a full axillary clearance can potentially be made during surgery with touch imprint cytology, fresh frozen section histology, or with molecular polymerase chain reaction assays such as the GeneSearch BLN Assay (Veridex, USA). Sentinel lymph node biopsy is safe, with a false negative rate of less than 10% and reduced morbidity and hospital stay compared with full axillary clearance. Current research is evaluating the role of complete axillary clearance versus radiotherapy after a positive sentinel lymph node biopsy. In addition, uncertainty remains over the correct management of micrometastases (metastases less than 2 mm) and isolated tumour cells in the biopsy, which by themselves do not alter prognosis.

Endoscopic assisted surgery
Endoscopic removal of axillary nodes and endoscopic mastectomy have been examined in small series with encouraging reports of improved morbidity. Currently the evidence is insufficiently robust to advocate widespread use of these techniques outside clinical trials or specialist centres. Nipple endoscopy is finding a role in the investigation of nipple discharge.

Minimally invasive techniques
Percutaneous ablation of small (generally less than 3 cm) breast tumours has been examined with radiofrequency ablation, laser therapy, and cryotherapy. Insufficient evidence exists of the effectiveness of these techniques for use outside a research setting.

Oncoplastic surgery
Reconstruction of the breast with better implants and reconstructive surgical techniques continues to improve the cosmetic results of mastectomy. Immediate reconstruction is often feasible, although many centres prefer to delay reconstruction until after adjuvant radiotherapy if that is required. The overlying skin and nipple can be spared in selected cases of ductal carcinoma in situ and small cancers. In addition, there are several new approaches to performing oncoplastic procedures after breast conserving surgery.

Improvements in adjuvant radiotherapy
After breast conserving surgery all women require breast radiotherapy, which reduces local recurrence rates from 26% to 7%25 Until recently, radiotherapy was given over five weeks, but long term follow-up of randomised trials has shown that accelerated hypofractionated radiotherapy (for example, 40 Gy in 15 fractions over three weeks) produces equivalent low rates of local recurrence without prejudicing cosmesis or late effects. Accelerated radiotherapy requires fewer visits for the patient and has substantial cost savings.

Meta-analysis of randomised trials has shown that radiotherapy after mastectomy improves survival in women with axillary node metastases, and it is generally accepted that women with four or more involved nodes benefit from radiotherapy. However, since many of these trials were conducted, the risk of local recurrence has improved substantially, owing to better surgery and systemic adjuvant therapy, as well as to stage migration. The relevance, therefore, of the meta-analysis to women with one to three node involvement is less clear and is subject to ongoing randomised trials.

SUMMARY POINTS
Breast cancer mortality is falling in the Western world as a result of advances in treatment, but it remains a leading cause of death owing to the high and increasing incidence of breast cancer.
Several risk factors may present opportunities to lower risk, such as prolonged use of combined hormone replacement therapy and lifestyle factors.
Tamoxifen or raloxifene taken for five years prevents a third of breast cancers, but with no evidence of a reduction in deaths from breast cancer.
For women at high risk of breast cancer, screening with magnetic resonance imaging is significantly more sensitive than mammography.
Advances in surgery continue to decrease morbidity through use of sentinel lymph node biopsy and oncoplastic surgery.
Adjuvant radiotherapy for many women can now be given over shorter periods, with similar efficacy and side effects.

ONGOING RESEARCH

- Large cohort studies are recruiting participants to identify new risk factors for breast cancer and to examine links between environmental factors and genetics
- Aromatase inhibitors and other agents in the prevention of breast cancer
- Appropriate management of patients after biopsy of the sentinel lymph node
- Safety and side effects of techniques for partial breast irradiation

Fig 2 | Contrast enhanced magnetic resonance scan of the breast. Left: At presentation from a 39 year old woman with a 3 cm breast cancer in the right upper outer quadrant (large arrow) with two involved lymph nodes (small arrows). Right: Same woman after neoadjuvant chemotherapy. Surgical pathology tests confirmed a pathologically complete remission.
Current radiotherapy research is examining techniques to decrease toxicity and further accelerate treatment, with partial breast irradiation after wide local excision. Examples include:

- Intraoperative radiotherapy. Delivery of a single dose of radiotherapy during surgery to the breast cavity. Early results suggest encouragingly low recurrence rates, and large randomised studies are examining this further.\(^{30}\)
- Brachytherapy, most commonly with MammoSite (Hologic, USA). Delivery of a radioactive seed directly into the breast cavity via a catheter placed at surgery, typically with five to 10 days of brachytherapy. Recurrence rates are low in early clinical trials.\(^{30}\)
- Three dimensional conformal radiotherapy.

The evidence base for partial breast irradiation is not as strong as for conventional external beam radiotherapy and should, in general, be given in the context of a clinical trial.

We thank Katharine Piggott and Mo Keshgir for critically reading this manuscript and the reviewers for their helpful suggestions.

Contributors: Both authors planned and wrote this review and act as guarantors.

Competing interests: AL has received consultancy and lecturing fees from AstraZeneca, Bristol-Myers Squibb, GlaxoSmithKline, Roche, and Sanofi-Aventis

Provenance and peer review: Commissioned; externally peer reviewed. Patient consent obtained.