Multidisciplinary team working has been implemented in cancer care systems throughout much of Europe, the United States, and Australia, without any clear evidence for its effectiveness. In the UK, multidisciplinary teams have more recently been recommended for the management of other conditions including diabetes, stroke and neurological rehabilitation, chronic obstructive pulmonary disease, and coronary heart disease. The rationale for introducing multidisciplinary teams is that as the management of disease becomes more complex, it is important to involve all key professional groups in making clinical decisions for individual patients. The widespread introduction of these teams illustrates a recurring paradox in the modern UK National Health Service: we demand an evidence base for individual clinical decisions but not for overall organisational decisions. Here, we describe the implementation of multidisciplinary teams in cancer services in England and review the international evidence for their effectiveness.

Implementation of multidisciplinary teams

Multidisciplinary teams were introduced to overcome several shortfalls in UK cancer care and as such are multifunctional. They aim to ensure that all patients receive timely treatment and care from appropriately skilled professionals, that there is continuity of care, and that patients get adequate information and support. The teams also facilitate communication between primary, secondary, and tertiary care as well as collection of reliable data for the benefit of individual patients and for audit and research. Teams can monitor adherence to clinical guidelines and can promote the effective use of resources. They may also improve participants’ working lives, not least by providing opportunities for learning and development.

The implementation of multidisciplinary team working in cancer was given impetus by the launch of the NHS breast screening programme in 1988, but by the mid-1990s team working was still patchy. The main driver for implementation has been publication of national guidance on improving clinical outcomes for specific tumours, starting with breast cancer in 1996 and most recently for brain and central nervous system tumours in 2006. This guidance details the composition of teams (defining core and extended members, including surgeons, radiologists, histopathologists, oncologists, clinical nurse specialists, allied health professionals, and multidisciplinary team coordinators), as well as specifying that each team has a designated lead clinician. The guidance also defines some of the working practices (such as meeting regularly to discuss all new cases and having protocols for referral and treatment).

Cancer care is increasingly delivered by multidisciplinary teams. Cath Taylor and colleagues argue that stronger evidence is needed of their effectiveness.

### Table 1 | Adherence of cancer teams in England to national standards (from national peer review data 2004–7)

<table>
<thead>
<tr>
<th>National standard</th>
<th>Mean % of teams adhering to standards*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team leadership</td>
<td>96</td>
</tr>
<tr>
<td>Team criteria</td>
<td>95</td>
</tr>
<tr>
<td>Participation in approved clinical trials</td>
<td>90</td>
</tr>
<tr>
<td>Treatment planning decisions</td>
<td>88</td>
</tr>
<tr>
<td>Team structure</td>
<td>85</td>
</tr>
<tr>
<td>Team nurse specialist</td>
<td>84</td>
</tr>
<tr>
<td>Operational policy</td>
<td>78</td>
</tr>
<tr>
<td>Pathology guidelines</td>
<td>75</td>
</tr>
<tr>
<td>Clinical guidelines</td>
<td>74</td>
</tr>
<tr>
<td>Imaging guidelines</td>
<td>72</td>
</tr>
<tr>
<td>Referral guidelines</td>
<td>68</td>
</tr>
<tr>
<td>Extended team membership</td>
<td>66</td>
</tr>
<tr>
<td>Data collection</td>
<td>60</td>
</tr>
<tr>
<td>Service improvement</td>
<td>59</td>
</tr>
<tr>
<td>Network audit</td>
<td>58</td>
</tr>
<tr>
<td>Team meetings (eg, attendance)</td>
<td>56</td>
</tr>
<tr>
<td>Providing patient centred information</td>
<td>56</td>
</tr>
</tbody>
</table>

*Mean percentage is presented because standards may comprise several individual measures.

The national cancer peer review programme, launched in 2001, provides measurable standards to assess teams’ adherence to the guidance. The standards reflect best practice drawn from a combination of research evidence, national consensus, and expert opinion. All multidisciplinary teams submit self-assessments to a national database and a sample is validated by an external peer review team (clinicians, users, commissioners, and managers), who may also visit the teams.

Analysis of data collected in the second round of peer reviews, conducted during 2004–7 and including over 1000 teams across six cancer types (breast, colorectal, lung, gynaecological, upper gastrointestinal, and urological cancer), showed considerable variability in performance.

Adherence was generally higher among teams in the cancer types for which guidance was published earliest (breast, colorectal, and lung cancer). This may partly reflect the perceived readiness of specific cancer services to change their working practices but also suggests that teams’ performance improves as they become more established.

Across all tumour types, teams generally adhered well to standards concerning their composition, organisation of meetings, and having treatment guidelines and protocols in place. They performed less well in aspects of working that require additional resources, expertise, and time (such as audit and conducting surveys of patients’ experiences). Attendance at meetings, clearly a core requirement for effective multidisciplinary teams, is
problematic, with less than 60% achieving the standard (table 1). This reflects the shortage of some core staff, particularly oncologists and clinical nurse specialists.11,12 Some teams also lack a coordinator to prepare and organise meetings, which may reflect lack of investment in their training and development. Membership of several teams may prevent attendance at all relevant meetings—this is a particular problem for oncologists, radiologists, and histopathologists.

Recent clinical consensus gained from a UK national survey completed by over 2000 members of cancer multidisciplinary teams13 provides a platform for defining optimal ways of working. At least 90% of team members agreed with a wide range of criteria that define effective team working.

There is no consensus about how best to involve patients in the clinical decision making process in team meetings. The extent to which it is desirable or indeed practical for patients to attend meetings (as they do in UK meetings to plan mental health care14) is subject to debate. Health professionals are less keen generally than patients, primarily because of concerns that the fast moving explicit discussions about risk and prognosis may be inhibited or may distress patients.11,15,16

Team meetings use up a considerable amount of resources. There are about 1500 teams in England. This corresponds to over one million person hours of attendance at meetings each year. In addition, some members have to spend considerable amounts of time preparing materials for meetings. It has been estimated to take a radiologist 2 hours and a pathologist 2.4 hours to prepare for each hour of a team meeting, reviewing all relevant images, samples, and reports in line with royal colleges’ best practice guidelines.17 Using these figures we estimate that multidisciplinary team meetings cost the NHS around £50m (£57m; $79m) a year for preparation and a similar amount for attendance time.

Evidence of benefit
Evaluations of multidisciplinary teams have had to rely on weak study design, typically before and after studies. These are subject to confounding by concurrent changes to cancer care such as increased specialisation of the cancer workforce, improved adherence to evidence based guidelines, improvements in staging at diagnosis, and more effective treatments. Nevertheless, evidence is growing that multidisciplinary teams are associated with improved clinical decision making, clinical outcomes, patient experience, and working lives of team members.

Clinical decision making
A multidisciplinary approach to clinical decision making aims to ensure that tumours are accurately staged and treatment recommendations are evidence based, patient centred, and reached by consensus. Two observational studies in breast cancer found that multidisciplinary teams resulted in more evidence based recommendations and more timely treatment.18,19

The treatment recommendations made by multidisciplinary teams do not always take into account the patients’ preferences and their wider psychological and social issues. Analysis of decision making within upper gastrointestinal and colorectal cancer teams in the UK showed that 10-15% of treatment recommendations were not implemented.20,21 Typically, patients received more conservative treatment than originally planned because the teams had not considered patient based information such as comorbidity and patient preferences.

Clinical outcomes
In the UK, multidisciplinary working is associated with improved five year survival in colorectal and oesophageal cancer22 and improved two year survival in head and neck cancer.23 A recent systematic review also reports limited evidence of improved survival in lung cancer.24 In Sweden, introduction of multidisciplinary care was associated with improved seven year relative survival from breast cancer.25 Differences in survival rates within one healthcare region were eliminated once they established multidisciplinary teams and adhered to regional treatment guidelines.

A key objective of multidisciplinary teams is to ensure that patients are managed by a specialist team. The relation between specialist surgery and improved survival in breast cancer and oesophageal cancer is now well established.26,27,28

An agreed policy and commitment to team discussion of diagnostic and staging investigations is associated with improved staging (as shown for oesophageal cancers29), better preoperative treatment (eg, in bowel cancer29), and improved management (eg, for lung cancer patients30).

Patient experience
Evidence for multidisciplinary teams improving patient experience of care can be inferred from the results of national surveys of patient experience conducted in England. The experience of care reported by cancer patients improved between 2000 and 2004.31 Although multiple factors are likely to have played a part (including the profile given to patient experience in national policy, leadership at national and local levels, and the provision of funding and influence of charities), the improvements were greatest in cancers for which multidisciplinary teams were more established (breast, colorectal, and lung cancer) than for those, such as urological cancers, where guidance that included providing care within multidisciplinary teams was not published until 2002.

Team member experience
The impact of multidisciplinary teams on team members is not well understood. In the national survey of team members most respondents (90%) agreed that working in multidisciplinary teams is beneficial to the wellbeing of members, and 81% agreed that it improves job satisfaction.11 There is, however, anecdotal evidence of professional enmities, autocratic practice, and hierarchical boundaries making teams dysfunctional and participation stressful.31
Conclusions
The accumulating evidence for benefits of multidisciplinary team working is supported by strong clinical consensus arising from the UK national survey. At least 90% of respondents agreed that effective team working results in improved clinical decision making, more coordinated patient care, improvement to overall quality of care, more evidence based treatment decisions, and improved treatment. However, given the time and resources that multidisciplinary working requires, stronger evidence seems necessary. It is too late to consider randomised trials to evaluate the effectiveness of multidisciplinary teams in the UK: they are so firmly woven into the fabric of clinical practice that it is beyond unpicking. But trials could be conducted in countries that have yet to formalise the introduction of multidisciplinary teams. Lessons learnt from cancer should also be applied to the implementation of team working in other diseases.

Cath Taylor research fellow, King’s College London, London SE1 8WA
Alastair J Munro professor of radiology oncology, Surgery and Molecular Oncology, Ninewells Hospital, University of Dundee, Dundee DD1 9SY
Rob Glynne-Jones consultant clinical oncologist, Mount Vernon Cancer Centre, Middlesex, HA4 2RR
Clive Griffith consultant breast surgeon, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP
Paul Trevatt Macmillan network nurse director, North East London Cancer Network, London E1 1BB
Michael Richards national cancer director, National Cancer Action Team, St Thomas’ Hospital, London SE1 7EH
Amanda J Ramirez professor of liaison psychiatry, Cancer Research UK Promoting Early Presentation Group, Adamson Centre, St Thomas’ Hospital, London SE1 7EH
Correspondence to: C Taylor cath.taylor@kcl.ac.uk
We thank Cheryl Cavanagh for her contribution to the national survey of cancer multidisciplinary team members and Emma Teasdale for helping with the analysis of national peer review data.

Contributors and sources: This article is based on information gathered through searches of international literature, analysis of data from the national peer review programme completed by cancer multidisciplinary teams in England, and results from a national survey of cancer team members across England. AIR is the principal investigator for a multidisciplinary team research programme for which CT was the project lead; MR is the national cancer director for England; RG-J, AJM, CG, and PT are academic clinicians involved in aspects of training or evaluating multidisciplinary teams; and have experience of working clinically in cancer teams. MR and AIR had the idea for this article. CT retrieved and critiqued literature, managed a subanalysis of the national peer review data, analysed the survey data, and co-wrote the report of findings from the survey. CT wrote the first draft of this manuscript, all authors participated in the critical revision of the article and approved the final version. AIR is the guarantor.

Funding: Cancer Research UK.

Competing interests: All authors have completed the unified competing interest form at www.cmajo.org/coi_disclosure.pdf (available on request from the corresponding author) and declare (1) no financial support for the submitted work from anyone other than their employer and Cancer Research UK; (2) CT and King’s College London have received funding from the Department for Health for work relating to analysis of the NCTA survey; RG-J has received honoraria for serving on advisory boards and travel expenses for meetings from Roche, Merck-Serono, Pfizer, Sanofi-Aventis; The Department of Health paid NHS Tayside for 24 days of AM’s time so that he could prepare e-learning resources for multidisciplinary team members; (3) no spouses, partners, or children with relationships with commercial entities that might have an interest in the submitted work; and (4) no financial interests that may be relevant to the submitted work.

Provenance and peer review: Not commissioned, externally peer reviewed.

17 Kane B, Luz S, O'Briain DS, McDermott R. Multidisciplinary team meetings and their impact on workflow in radiology and pathology departments. BMC Medicine 2007; 5:15

Cite this as: BMJ 2010;340:c651